Project Icon

Tensor-Puzzles

21个张量编程挑战助力深入理解PyTorch和NumPy

Tensor-Puzzles项目包含21个张量编程挑战,旨在加深对PyTorch和NumPy等张量编程语言的理解。这些精心设计的题目引导学习者利用广播等技巧,从基本原理实现复杂张量操作,减少对标准库的依赖。项目注重实践和创新,有助于全面提升张量编程能力。

tree-of-thought-puzzle-solver - 基于Tree-of-Thought框架的Sudoku解题器
GPT-3.5-turboGithubLLMOpenAISudokuTree-of-Thought开源项目
该项目展示了一种树形思维(Tree-of-Thought, ToT)框架的Sudoku解题器,旨在提升大型语言模型(LLMs)的复杂问题解决能力。ToT技术模仿人类通过探索和回溯的思维过程,具有动态调整和回溯的能力。项目实现包含多个模块,如prompter agent、checker module、memory module和ToT controller,并与LLM进行多轮对话,以实现智能求解。如需详细了解,请访问预印本。
Daily-DeepLearning - 全面计算机基础、Python应用、数据科学及机器学习指南
GithubPython开源项目操作系统数据结构机器学习深度学习
提供丰富的计算机科学教育资源,涵盖数据结构、操作系统、计算机网络等基础课程。Python和数据科学部分包括numpy、pandas、matplotlib等流行库的使用教程。机器学习和深度学习部分涉及逻辑回归、集成学习、RNN、CNN等理论及实践内容,适合初学者及进阶学习者掌握计算机科学与人工智能技术。
deep-learning-for-image-processing - 涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练的介绍深度学习在图像处理中的应用的教程
GithubPytorchTensorflow图像分类图像处理开源项目深度学习
本教程介绍深度学习在图像处理中的应用,涵盖使用Pytorch和Tensorflow进行网络结构搭建和训练。课程内容包括图像分类、目标检测、语义分割、实例分割和关键点检测,适合研究生和深度学习爱好者。所有PPT和源码均可下载,助力学习和研究。
ml-pen-and-paper-exercises - 机器学习经典算法笔算练习集
Github变分推断开源项目机器学习概率模型线性代数练习集
ml-pen-and-paper-exercises项目提供机器学习笔算练习题及解答,内容包括线性代数、优化、图模型和推断等主题。习题配有详细解析,适用于自学和教学。项目涵盖隐马尔可夫模型推断、变分推断和蒙特卡洛积分等专业内容。练习集在arXiv发布PDF版本,GitHub仓库开源代码。项目使用知识共享协议,支持学习和贡献。
ILearnDeepLearning.py - 深度学习和数据科学的开源实践项目集
GithubILearnDeepLearning.pyMedium开源项目数据科学深度学习神经网络
此开源项目库集合了多个与深度学习和数据科学相关的小项目,通过实际操作帮助用户理解复杂的神经网络问题。内容包括详细的代码示例和可视化展示,涵盖梯度下降、神经网络数学原理、过拟合分析、优化器选择、卷积神经网络理论及自定义对象检测模型的训练等。适合希望深入了解和实践深度学习技术的用户,内容实用且丰富。
Deep-Learning-Projects - Jupyter notebook深度学习项目集合与实践指南
GitHubGithubJupyter Notebook开源项目教程深度学习项目
Deep-Learning-Projects是一个包含多个深度学习小项目的GitHub仓库,以Jupyter notebook形式呈现。仓库提供详细的项目说明和配套视频教程,涵盖多个深度学习领域。这些资源为不同水平的学习者和开发者提供了实践机会,有助于从理论到实践的学习过程。
einops - 灵活高效的张量操作,兼容多个框架
Githubeinopsnumpypytorchtensor操作开源项目深度学习
Einops 提供简洁高效的张量操作,适用于 numpy、pytorch、tensorflow、jax 等多个框架。通过易于理解的 Einstein 风格操作符,提高代码的可读性和可靠性。主要功能包括张量的重新排列、简化、复制、打包与解包。Einops 适用于深度学习和复杂数据处理任务,是开发者优化代码的理想工具。
from-python-to-numpy - Python到NumPy的向量化迁移指南
GithubNumPyPythonvectorization开源项目数据科学编程技术
From Python to Numpy 是一个开源的NumPy学习项目,采用Creative Commons Attribution 4.0国际许可证。该项目提供了从Python到NumPy的迁移指导,通过向量化技术展示如何提升代码效率。作者Nicolas P. Rougier分享了众多实用技巧,这些技巧往往只能通过实践获得,为读者提供了宝贵的学习和实践机会。项目涵盖了许多传统书籍未提及的内容,填补了现有NumPy学习资料的空白,帮助读者通过丰富的实例掌握NumPy的高级应用。
pytorch-cpp - C++ 实现的 PyTorch 教程,为深度学习研究者提供从基础到高级的全面指南
C++GithubLibTorchPyTorch开源项目教程深度学习
本项目提供了 C++ 版本的 PyTorch 教程,适用于从基础到高级的深度学习研究者,涵盖线性回归、卷积神经网络和生成对抗网络等内容。支持 macOS、Linux 和 Windows 的多平台编译和运行,项目要求包括 C++-17 兼容编译器、CMake 和合适版本的 LibTorch。含有全面的构建与运行指南,以及交互式教程和 Docker 支持。
transformers-tutorials - Transformers模型在自然语言处理中的应用教程
BERTGithubHugging FaceNLPPyTorchTransformers开源项目
本项目提供了关于如何使用Transformers模型在自然语言处理任务中进行精细调优的详细教程,包括文本分类、情感分析、命名实体识别和摘要生成等案例。教程旨在帮助用户掌握应用最新NLP技术的技巧,并提供配套的Python代码示例和工具指南。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号