Project Icon

s4

多种序列建模模型的官方实现和实验

该页面提供多种序列建模模型的官方实现和实验,包括HiPPO、LSSL、SaShiMi、DSS、HTTYH、S4D、S4ND等。内容涵盖相关模型的源代码概述和具体实验复现,并详细说明如何设置环境、训练模型及生成序列。页面还介绍了优化器超参数、数据集管理和实验配置的详细信息,特别适合使用PyTorch和PyTorch-Lightning进行数据和模型训练的用户。

OFA - 多任务优化的跨模态序列到序列预训练模型
GithubOFA图像字幕多模态开源项目文本生成预训练模型
OFA是一个支持中文和英文的序列到序列预训练模型,整合了跨模态、视觉和语言任务,支持微调和提示调优。其应用包括图像描述、视觉问答、视觉定位、文本生成和图像分类等。项目提供了详细的预训练和微调步骤、检查点和代码示例,以及在Hugging Face和ModelScope上的在线演示和Colab笔记本下载。欢迎社区参与改进和开发。
TinyLLaVA_Factory - 模块化的开源小规模多模态模型库
GithubHuggingFacePyTorchTinyLLaVA Factory多模态模型开源代码库开源项目
TinyLLaVA Factory是一个开源的模块化代码库,专注于简化小规模多模态模型的开发和定制,使用PyTorch和HuggingFace实现。其设计旨在简化代码实现、提高扩展性和确保训练结果的可重复性。支持如OpenELM、TinyLlama、StableLM等语言模型和CLIP、SigLIP等视觉模型。通过TinyLLaVA Factory,可减少编码错误,快速定制多模态模型,提高性能,为研究和应用提供强大工具。
llama_3.1_q4 - 高效文本生成模型,结合优化技术提升性能
GithubHuggingfaceUnslothtransformers开源项目文本生成模型模型训练
llama_3.1_q4模型结合Unsloth与Huggingface TRL库,实现快速训练,保持8B参数模型的强大性能,优化文本生成能力。项目在Apache-2.0许可下开放使用,适用于多语言生成,由keetrap负责开发。
llm_distillation_playbook - 大语言模型蒸馏技巧与实践指南
GPT-4GithubLLM开源开源项目模型蒸馏评估标准
LLM Distillation Playbook项目提供了系统化的大语言模型蒸馏实践指南。该项目探讨了模型蒸馏的关键概念、评估标准和实用技巧,涵盖数据准备到模型部署的全流程。它为工程师和ML实践者提供见解,帮助在生产环境中将大型语言模型压缩为高效小型版本。该指南融合学术研究和实践经验,是开源LLM开发的参考资源。
PiSSA - 高效微调大语言模型的创新方法
GithubPiSSA低秩适应参数高效微调大语言模型奇异值分解开源项目
PiSSA是一种创新的参数高效微调方法,通过优化关键奇异值和向量来增强大语言模型性能。相较于LoRA,PiSSA展现出更快的收敛速度和更优的效果。在多个基准测试中,PiSSA的表现全面超越LoRA。这种方法不仅保留了LoRA的参数效率和量化兼容性优势,还大幅降低了4位量化误差。PiSSA初始化迅速,易于从LoRA转换。在多种模型和任务中,PiSSA均表现出色,为大语言模型的高效微调提供了新的可能性。
HyperTS - 全面的时间序列分析工具包 支持多任务和多模式分析
GithubHyperTS开源项目异常检测时间序列分析自动机器学习预测
HyperTS是一款全面的时间序列分析工具包,集成了统计模型、深度学习和神经架构搜索。它支持预测、分类、回归和异常检测等多种任务,适用于复杂的时间序列分析场景。该工具包提供多变量和协变量支持,概率区间预测,以及丰富的预处理、评估指标和搜索策略。HyperTS简单易用,为时间序列分析提供了端到端的自动化解决方案。
dlwpt-code - 深入浅出PyTorch深度学习指南
Deep Learning with PyTorchGithubPyTorch开源项目机器学习深度学习编程
《Deep Learning with PyTorch》通过实际项目展示深度学习的基础知识,适合希望掌握PyTorch的开发者、计算机科学家、数据科学家及相关专业学生。书中提供了对深度学习的直观理解,并深入探讨PyTorch的部分功能,适合具备编程基础的读者。作者团队拥有丰富的实践经验和开源项目贡献,确保内容实用且前沿。
Transformer-TTS - 神经语音合成系统
GithubPyTorchTacotronTransformer-TTS开源项目神经网络语音合成
Transformer-TTS,一个基于Pytorch的高效神经语音合成系统。它使用Transformer网络,且训练速度是传统seq2seq模型的3到4倍。不仅提供预训练模型,其合成语音质量经实验证明优异。同时,项目支持自定义学习模型及策略,包括Noam式预热衰减学习率及关键的梯度裁剪等,是语音合成研究的理想选择。
SPPO - 自我对弈优化提升语言模型对齐效果
AlpacaEval 2.0Gemma-2-9B-It-SPPO-Iter3GithubLlama-3-8B-InstructMistral-7B-InstructSPPO开源项目
SPPO采用自我对弈框架和新的学习目标,有效提升大规模语言模型性能。通过理论推导和多数据集实证验证,SPPO无需外部信号即可超越GPT-4等模型。该项目源代码和多个优化模型如Mistral-7B、Llama-3-8B、Gemma-2-9B均已开源,详情可参考相关论文。
inseq - 基于Pytorch的序列生成模型解释性分析工具
GithubInseqPytorch序列生成开源项目模型解释集成渐变
Inseq是一个基于Pytorch的可定制工具包,专为序列生成模型的后验可解释性分析设计。它支持多种特性归因方法,可高效分析单例或整套数据集的各类模型,包括GPT-2。Inseq支持在Jupyter Notebook、浏览器和命令行中进行可视化,并提供多种后处理和归因映射合并功能。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号