Project Icon

glaze

高性能JSON库 内存直接读写与编译时反射

Glaze是一款高性能开源JSON库,支持直接内存读写和编译时反射。它无需额外元数据即可处理聚合可初始化结构,兼容MSVC、Clang和GCC。Glaze还集成了BEVE二进制编码和CSV格式支持,为JSON数据处理提供全面解决方案。

Glaze

One of the fastest JSON libraries in the world. Glaze reads and writes from object memory, simplifying interfaces and offering incredible performance.

Glaze also supports:

  • BEVE (binary efficient versatile encoding)
  • CSV (comma separated value)

With compile time reflection for MSVC, Clang, and GCC!

Highlights

See DOCS for more documentation.

Performance

LibraryRoundtrip Time (s)Write (MB/s)Read (MB/s)
Glaze1.0413661224
simdjson (on demand)N/AN/A1198
yyjson1.2310051107
daw_json_link2.93365553
RapidJSON3.65290450
Boost.JSON (direct)4.76199447
json_struct5.50182326
nlohmann15.718480

Performance test code available here

Performance caveats: simdjson and yyjson are great, but they experience major performance losses when the data is not in the expected sequence or any keys are missing (the problem grows as the file size increases, as they must re-iterate through the document).

Also, simdjson and yyjson do not support automatic escaped string handling, so if any of the currently non-escaped strings in this benchmark were to contain an escape, the escapes would not be handled.

ABC Test shows how simdjson has poor performance when keys are not in the expected sequence:

LibraryRead (MB/s)
Glaze678
simdjson (on demand)93

Binary Performance

Tagged binary specification: BEVE

MetricRoundtrip Time (s)Write (MB/s)Read (MB/s)
Raw performance0.4232352468
Equivalent JSON data*0.4235472706

JSON size: 670 bytes

BEVE size: 611 bytes

*BEVE packs more efficiently than JSON, so transporting the same data is even faster.

Example

Your struct will automatically get reflected! No metadata is required by the user.

struct my_struct
{
  int i = 287;
  double d = 3.14;
  std::string hello = "Hello World";
  std::array<uint64_t, 3> arr = { 1, 2, 3 };
  std::map<std::string, int> map{{"one", 1}, {"two", 2}};
};

JSON (prettified)

{
   "i": 287,
   "d": 3.14,
   "hello": "Hello World",
   "arr": [
      1,
      2,
      3
   ],
   "map": {
      "one": 1,
      "two": 2
   }
}

Write JSON

my_struct s{};
std::string buffer = glz::write_json(s).value_or("error");

or

my_struct s{};
std::string buffer{};
auto ec = glz::write_json(s, buffer);
if (ec) {
  // handle error
}

Read JSON

std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})";
auto s = glz::read_json<my_struct>(buffer);
if (s) // check std::expected
{
  s.value(); // s.value() is a my_struct populated from buffer
}

or

std::string buffer = R"({"i":287,"d":3.14,"hello":"Hello World","arr":[1,2,3],"map":{"one":1,"two":2}})";
my_struct s{};
auto ec = glz::read_json(s, buffer); // populates s from buffer
if (ec) {
  // handle error
}

Read/Write From File

auto ec = glz::read_file_json(obj, "./obj.json", std::string{});
auto ec = glz::write_file_json(obj, "./obj.json", std::string{});

[!IMPORTANT]

The file name (2nd argument), must be null terminated.

Compiler/System Support

  • Requires C++23
  • Only tested on 64bit systems, but should run on 32bit systems
  • Only supports little-endian systems

Actions build and test with Clang (15+), MSVC (2022), and GCC (12+) on apple, windows, and linux.

clang build gcc build msvc build

Glaze seeks to maintain compatibility with the latest three versions of GCC and Clang, as well as the latest version of MSVC and Apple Clang.

MSVC Compiler Flags

Glaze requires a C++ standard conformant pre-processor, which requires the /Zc:preprocessor flag when building with MSVC.

How To Use Glaze

FetchContent

include(FetchContent)

FetchContent_Declare(
  glaze
  GIT_REPOSITORY https://github.com/stephenberry/glaze.git
  GIT_TAG main
  GIT_SHALLOW TRUE
)

FetchContent_MakeAvailable(glaze)

target_link_libraries(${PROJECT_NAME} PRIVATE glaze::glaze)

Conan

find_package(glaze REQUIRED)

target_link_libraries(main PRIVATE glaze::glaze)

build2

import libs = libglaze%lib{glaze}

Arch Linux

See this Example Repository for how to use Glaze in a new project


See FAQ for Frequently Asked Questions

Explicit Metadata

If you want to specialize your reflection then you can optionally write the code below:

This metadata is also necessary for non-aggregate initializable structs.

template <>
struct glz::meta<my_struct> {
   using T = my_struct;
   static constexpr auto value = object(
      &T::i,
      &T::d,
      &T::hello,
      &T::arr,
      &T::map
   );
};

Local Glaze Meta

Glaze also supports metadata provided within its associated class:

struct my_struct
{
  int i = 287;
  double d = 3.14;
  std::string hello = "Hello World";
  std::array<uint64_t, 3> arr = { 1, 2, 3 };
  std::map<std::string, int> map{{"one", 1}, {"two", 2}};
  
  struct glaze {
     using T = my_struct;
     static constexpr auto value = glz::object(
        &T::i,
        &T::d,
        &T::hello,
        &T::arr,
        &T::map
     );
  };
};

Custom Key Names or Unnamed Types

When you define Glaze metadata, objects will automatically reflect the non-static names of your member object pointers. However, if you want custom names or you register lambda functions or wrappers that do not provide names for your fields, you can optionally add field names in your metadata.

Example of custom names:

template <>
struct glz::meta<my_struct> {
   using T = my_struct;
   static constexpr auto value = object(
      "integer", &T::i,
      "double", &T::d,
      "string", &T::hello,
      "array", &T::arr,
      "my map", &T::map
   );
};

Each of these strings is optional and can be removed for individual fields if you want the name to be reflected.

Names are required for:

  • static constexpr member variables
  • Wrappers
  • Lambda functions

Custom Read/Write

Custom reading and writing can be achieved through the powerful to_json/from_json specialization approach, which is described here: custom-serialization.md. However, this only works for user defined types.

For common use cases or cases where a specific member variable should have special reading and writing, you can use glz::custom to register read/write member functions, std::functions, or lambda functions.

See an example:

struct custom_encoding
{
   uint64_t x{};
   std::string y{};
   std::array<uint32_t, 3> z{};
   
   void read_x(const std::string& s) {
      x = std::stoi(s);
   }
   
   uint64_t write_x() {
      return x;
   }
   
   void read_y(const std::string& s) {
      y = "hello" + s;
   }
   
   auto& write_z() {
      z[0] = 5;
      return z;
   }
};

template <>
struct glz::meta<custom_encoding>
{
   using T = custom_encoding;
   static constexpr auto value = object("x", custom<&T::read_x, &T::write_x>, //
                                        "y", custom<&T::read_y, &T::y>, //
                                        "z", custom<&T::z, &T::write_z>);
};

suite custom_encoding_test = [] {
   "custom_reading"_test = [] {
      custom_encoding obj{};
      std::string s = R"({"x":"3","y":"world","z":[1,2,3]})";
      expect(!glz::read_json(obj, s));
      expect(obj.x == 3);
      expect(obj.y == "helloworld");
      expect(obj.z == std::array<uint32_t, 3>{1, 2, 3});
   };
   
   "custom_writing"_test = [] {
      custom_encoding obj{};
      std::string s = R"({"x":"3","y":"world","z":[1,2,3]})";
      expect(!glz::read_json(obj, s));
      std::string out{};
      expect(not glz::write_json(obj, out));
      expect(out == R"({"x":3,"y":"helloworld","z":[5,2,3]})");
   };
};

Object Mapping

When using member pointers (e.g. &T::a) the C++ class structures must match the JSON interface. It may be desirable to map C++ classes with differing layouts to the same object interface. This is accomplished through registering lambda functions instead of member pointers.

template <>
struct glz::meta<Thing> {
   static constexpr auto value = object(
      "i", [](auto&& self) -> auto& { return self.subclass.i; }
   );
};

The value self passed to the lambda function will be a Thing object, and the lambda function allows us to make the subclass invisible to the object interface.

Lambda functions by default copy returns, therefore the auto& return type is typically required in order for glaze to write to memory.

Note that remapping can also be achieved through pointers/references, as glaze treats values, pointers, and references in the same manner when writing/reading.

Value Types

A class can be treated as an underlying value as follows:

struct S {
  int x{};
};

template <>
struct glz::meta<S> {
  static constexpr auto value{ &S::x };
};

or using a lambda:

template <>
struct glz::meta<S> {
  static constexpr auto value = [](auto& self) -> auto& { return self.x; };
};

Error Handling

Glaze is safe to use with untrusted messages. Errors are returned as error codes, typically within a glz::expected, which behaves just like a std::expected.

Glaze works to short circuit error handling, which means the parsing exits very rapidly if an error is encountered.

To generate more helpful error messages, call format_error:

auto pe = glz::read_json(obj, buffer);
if (pe) {
  std::string descriptive_error = glz::format_error(pe, buffer);
}

This test case:

{"Hello":"World"x, "color": "red"}

Produces this error:

1:17: expected_comma
   {"Hello":"World"x, "color": "red"}
                   ^

Denoting that x is invalid here.

Input Buffer (Null) Termination

A non-const std::string is recommended for input buffers, as this allows Glaze to improve performance with temporary padding and the buffer will be null terminated.

JSON

By default the option null_terminated is set to true and null-terminated buffers must be used when parsing JSON. The option can be turned off with a small loss in performance, which allows non-null terminated buffers:

constexpr glz::opts options{.null_terminated = false};
auto ec = glz::read<options>(value, buffer); // read in a non-null terminated buffer

BEVE

Null-termination is not required when parsing BEVE (binary). It makes no difference in performance.

CSV

[!WARNING]

Currently, null_terminated = false is not valid for CSV parsing and buffers must be null terminated.

Type Support

Array Types

Array types logically convert to JSON array values. Concepts are used to allow various containers and even user containers if they match standard library interfaces.

  • glz::array (compile time mixed types)
  • std::tuple (compile time mixed types)
  • std::array
  • std::vector
  • std::deque
  • std::list
  • std::forward_list
  • std::span
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号