Project Icon

wav2vec2-base-superb-ks

高效的关键词识别音频分类模型

Wav2Vec2-Base模型支持SUPERB关键字识别任务,具备高准确性和快速响应的特点。该模型预训练于16kHz语音音频,采用Speech Commands数据集,通过Hugging Face的管道实现关键词检测,适应实时设备应用。

wav2vec2-large-xlsr-korean - 基于wav2vec2的韩语语音识别模型实现高精度自动转写
GithubHuggingfaceWav2Vec2XLSRZeroth Korean开源项目模型语音识别韩语
wav2vec2-large-xlsr-korean是一个开源的韩语自动语音识别模型。该模型基于wav2vec2-large-xlsr架构,在Zeroth Korean数据集上训练和评估。模型展现出卓越性能,词错误率(WER)为4.74%,字符错误率(CER)为1.78%。它能够直接将音频转换为文本,为韩语语音识别应用提供了高精度的开源解决方案。
chinese_speech_pretrain - 中文语音预训练模型,wav2vec 2.0和HuBERT的开源实现
GithubHuBERTWenetSpeechwav2vec 2.0中文语音识别开源项目语音预训练模型
chinese_speech_pretrain项目开源了基于WenetSpeech数据集训练的中文语音预训练模型。项目包含wav2vec 2.0和HuBERT的BASE与LARGE版本,均使用1万小时多样化中文语音数据训练。模型在自动语音识别任务中表现优异,尤其适合低资源场景。项目提供模型下载及使用指南,可用于语音识别、语音合成等研究领域。
wavlm-base-plus-sv - 面向说话人验证的先进语音模型
GithubHuggingfaceWavLM开源项目模型自监督学习语音识别说话人验证预训练模型
WavLM-Base-Plus-SV是一款专为说话人验证优化的预训练语音模型。基于HuBERT框架,通过创新的门控相对位置偏置和话语混合训练,显著提升了语音内容和说话人特征的建模能力。经过94000小时语音数据预训练和VoxCeleb1数据集微调,该模型在SUPERB基准测试中展现出卓越性能。它能够有效提取说话人嵌入向量,适用于相似度检索和说话人验证等多种应用场景。
wav2vec2-large-xlsr-53-esperanto - 基于XLSR-53微调的世界语语音识别模型
Common VoiceEsperantoGithubHuggingfaceWav2Vec2XLSR开源项目模型语音识别
该项目基于wav2vec2-large-xlsr-53模型,使用世界语Common Voice数据集进行微调,开发了一个世界语语音识别模型。模型在测试集上实现12.31%的词错误率(WER),支持16kHz采样率的语音输入。它可直接应用于语音识别任务,无需额外语言模型。项目详细介绍了模型的使用方法和评估过程。
wav2vec2-lg-xlsr-en-speech-emotion-recognition - 微调Wav2Vec 2.0实现高精度语音情感识别
GithubHuggingfaceRAVDESS数据集Wav2Vec 2.0开源项目微调模型深度学习语音情感识别
项目利用微调技术优化wav2vec2-large-xlsr-53-english模型,在RAVDESS数据集上训练出准确率达82.23%的语音情感识别系统。该模型可辨别8种情感状态,包括愤怒、平静和厌恶等。这一成果为语音情感分析、人机交互和情感计算领域的研究提供了新的思路和实践参考。
wav2vec2-large-xlsr-53-swedish - 基于Wav2Vec2的瑞典语语音识别模型 支持16kHz采样率
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型模型训练瑞典语语音识别
这是一个基于Wav2Vec2-Large-XLSR-53在瑞典语数据集上微调的语音识别模型。模型在Common Voice瑞典语测试集上达到14.29% WER和4.93% CER的性能。它可直接使用,无需额外语言模型,适用于16kHz采样率音频。模型经过多阶段预训练和微调,为瑞典语自动语音识别任务提供了有效解决方案。
emotion-recognition-wav2vec2-IEMOCAP - 基于wav2vec2的语音情感识别开源模型
GithubHuggingfaceIEMOCAPSpeechBrainwav2vec2开源项目模型深度学习语音情感识别
基于SpeechBrain框架开发的语音情感识别模型,集成wav2vec2架构并通过IEMOCAP数据集训练。模型采用卷积网络和残差结构,结合注意力机制进行特征提取,在测试集达到78.7%准确率。支持16kHz音频输入并提供自动标准化处理功能,可直接应用于语音情感分析任务。
wav2vec2-large-xlsr-53-spanish - Wav2Vec2模型在西班牙语语音识别中的表现
Common VoiceGithubHuggingfaceWav2Vec2开源项目模型自动语音识别西班牙语音频
项目在Common Voice ES测试集上测试了Wav2Vec2模型的性能,语音识别错误率为17.6%。此项目使用Facebook发布的模型,与Torchaudio结合进行数据预处理,实现了语音到文本的转化,展示了语音处理与自动语音识别领域的最新进展。
wav2vec2-large-xlsr-53-french - 法语语音识别模型实现自动语音文本转录
Common VoiceGithubHuggingfaceXLSR开源项目机器学习模型法语语音识别
该开源模型通过针对法语的深度训练,实现了法语语音到文本的自动转录功能。模型支持处理16kHz采样率的语音输入,在标准测试集上展现出较低的错误率。模型提供完整的使用示例和评估工具,可用于法语语音识别相关应用开发。
wav2vec2-xlsr-53-espeak-cv-ft - 基于Wav2Vec2的跨语言零样本音素识别模型
GithubHuggingfaceWav2Vec2多语言模型开源项目模型语音识别跨语言识别音素识别
此模型在wav2vec2-large-xlsr-53预训练基础上,利用多语言Common Voice数据集微调,实现了多语言音素识别。通过将训练语言音素映射至目标语言,该模型采用简单有效的跨语言零样本学习方法。相比先前研究,此方法显著提升了性能,为多语言语音识别领域提供了一个简洁而强大的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号