Project Icon

flash-linear-attention

Triton实现的高效线性注意力模型库

Flash Linear Attention是一个基于Triton实现的线性注意力模型库。该项目集成了RetNet、GLA和Based等多种先进模型,实现了高效的token混合和文本生成。兼容Hugging Face Transformers库,提供预训练模型、评估工具和基准测试,为线性注意力技术的研究和应用提供了便利。

former - 使用PyTorch实现简单Transformer模型的指南
GithubIMDb数据集PyTorchtransformer分类实验开源项目自注意力机制
详细介绍了如何使用PyTorch从零开始实现简单的Transformer模型,包含安装和使用指南,以及通过命令行控制超参数和数据自动下载的说明。
keras_cv_attention_models - 深度学习模型和使用指南
GithubKeras_cv_attention_modelsPyTorchTensorFlow开源项目模型训练
该项目提供全面的深度学习模型和使用指南,支持Keras和PyTorch后端。涵盖基础操作、模型训练、推理优化等功能,并详细介绍识别、检测、分割和语言模型的使用。还支持ONNX导出和推理性能评估。
ctransformers - Python接口的高效C/C++ Transformer模型
CTransformersGGMLGithubLangChainPythonTransformer模型开源项目
CTransformers提供Python接口,通过GGML库高效加载和运行C/C++实现的Transformer模型。支持多种模型类型,如GPT-2、GPT-J、LLaMA等,并可与Hugging Face和LangChain集成。提供CUDA、ROCm和Metal兼容的GPU加速选项,适合高性能自然语言处理任务。
xFasterTransformer - 高效的大规模语言模型推理优化方案
GithubPython APIXeonxFasterTransformer大语言模型开源项目高性能
xFasterTransformer是一个为X86平台优化的大规模语言模型(LLM)推理解决方案,支持多插槽和节点的分布式运行,适用于大型模型推理。它提供C++和Python API,支持例如ChatGLM、Llama、Baichuan等流行的LLM模型,并可通过PyPI、Docker或从源代码进行安装。项目附带详细文档、API使用示例、基准测试代码和Web演示,确保用户能充分利用其高性能和高扩展性。
fltr - 基于自然语言处理的高效问答搜索工具
GithubIntel I5-6500Mistral 7BMixtral 8x7BNvidia RTX 3070安装开源项目
fltr是一种基于Mistral 7B和Mixtral 8x7B模型的搜索工具,适用于自然语言问题。支持在Nvidia RTX 3070和Intel I5-6500设备上高效运行,分别处理每秒52个和5个输入标记。安装简便,兼容Linux和macOS系统。用户可通过简单命令快速上手,包括检测电子邮件垃圾邮件等功能。
xformers - Transformer 研究加速工具
GithubPyTorchTransformerxFormers开源项目注意力机制深度学习
xFormers 是一个加速 Transformer 研究的开源工具库。它提供可自定义的独立模块,无需样板代码即可使用。该项目包含前沿组件,专注于研究需求,同时注重效率。xFormers 的组件运行快速且内存利用率高,集成了自定义 CUDA 内核和其他相关库。它支持多种注意力机制、前馈网络和位置编码,适用于计算机视觉、自然语言处理等多个领域的研究工作。
T-GATE - 研究了在文本到图像扩散模型中的时序注意机制
GithubTGATE图像生成开源项目扩散模型自注意力跨注意力
TGATE项目研究了在文本到图像扩散模型中的时序注意机制。研究发现,交叉注意输出在几步推理后可以收敛到固定点,通过采用缓存和重用这些输出的方式,无需额外训练,即可提升现有模型的运行速度10%–50%。TGATE易于集成,提供快速图像生成,适用于CNN U-Net、Transformer和Consistency Model。
ttt-lm-pytorch - 基于测试时训练的高表达能力RNN模型
GithubRNNTTT序列建模开源项目机器学习隐藏状态
ttt-lm-pytorch项目提出了一种新型序列建模层,结合了RNN的线性复杂度和高表达能力的隐藏状态。该方法将隐藏状态设计为机器学习模型,通过自监督学习在测试阶段持续更新,因此被称为测试时训练(TTT)层。项目实现了TTT-Linear和TTT-MLP两种变体,分别采用线性模型和双层MLP作为隐藏状态,为长序列建模提供了高效替代方案。
LookaheadDecoding - 创新并行算法加速大型语言模型推理
GithubJacobi迭代LLMLookahead Decoding并行解码开源项目推理加速
LookaheadDecoding项目开发了一种创新的并行解码算法,旨在加速大型语言模型(LLM)的推理过程。该方法不依赖草稿模型或数据存储,而是结合Jacobi迭代和n-gram缓存技术,有效减少解码步骤。实验结果显示,在多个数据集上可将延迟降低1.5到2.3倍。项目提供便捷的安装和使用方式,并支持FlashAttention技术,可广泛应用于各类LLM场景。
Comprehensive-Transformer-TTS - 基于非自回归 Transformer 的 TTS
GithubPyTorchTTS开源项目持续时间建模语音合成非自回归变换器
该项目采用非自回归Transformer技术,集成多种最新状态转换模型。Comprehensive-Transformer-TTS不仅提供监督与非监督持续时间建模, 也支持多种数据集和SOTA技术,如Fastformer和Long-Short Transformer,力求在文本到语音转换领域取得领先成果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号