Project Icon

CycleISP

基于改进数据合成的图像修复框架

CycleISP框架通过改进的数据合成方法,为图像去噪提供了大规模真实数据对。在RAW和sRGB空间中,模拟相机成像管道,生成信号依赖噪声的图像对,提升了深度卷积神经网络在真实相机数据集上的表现。相比之前的最佳方法,模型参数减少了约5倍。该框架适用于图像去噪和立体电影中的颜色匹配等任务,确保在多种图像处理任务中的优异性能。

InstaFlow - 基于Rectified Flow的单步高质量图像生成技术
GithubInstaFlow人工智能图像生成开源项目文本生成图像深度学习
InstaFlow是一种基于Rectified Flow技术的单步图像生成器。该技术能生成接近Stable Diffusion质量的图像,同时大幅降低计算资源需求。InstaFlow通过直接将噪声映射到图像,避免了扩散模型的多步采样过程,将推理时间缩短至约0.1秒,比Stable Diffusion提高了约90%的效率。此外,InstaFlow还具有高质量输出和简单高效的训练过程等特点。
IP-Adapter-Instruct - 多任务图像生成的突破性技术
GithubIP Adapter Instruct图像生成多任务学习开源项目扩散模型条件控制
IP-Adapter-Instruct是一种先进的图像生成技术,融合了自然图像条件和指令提示。这个模型能够高效处理多种任务,包括风格迁移和对象提取,同时保持高质量输出。它克服了传统文本提示在描述图像风格和细节方面的局限性,提供了更精确的图像生成控制。IP-Adapter-Instruct在实际应用中表现出色,为扩散模型的发展提供了新的可能性。
SiT - 可扩展插值变换器 融合流模型和扩散模型的图像生成新方法
GithubSiT图像生成开源项目机器学习深度学习生成模型
SiT项目开发了可扩展插值变换器,这是一种基于扩散变换器的生成模型。通过灵活连接分布,SiT实现了对动态传输生成模型的模块化研究。在条件ImageNet 256x256基准测试中,SiT以相同的骨架和参数超越了DiT,并通过优化扩散系数获得了2.06的FID-50K分数。项目提供PyTorch实现、预训练模型和训练脚本,推动了图像生成技术的进步。
cond-image-leakage - 改进图像到视频扩散模型中的条件图像依赖问题
DynamiCrafterGithubVideoCrafter图像到视频生成开源项目扩散模型条件图像泄漏
该研究揭示并解决了图像到视频扩散模型中的条件图像依赖问题。研究团队提出了适用于DynamiCrafter、SVD和VideoCrafter1等多种模型的即插即用推理和训练策略。这些策略减轻了模型对条件图像的过度依赖,增强了生成视频的动态效果。项目开源的代码、模型和演示为图像到视频生成研究提供了重要参考。
img2img-turbo - 单步图像翻译模型
CycleGAN-TurboGithubimg2img-turbopix2pix-turbo图像转化对抗学习开源项目
通过对单步扩散模型(例如SD-Turbo)进行对抗性学习,img2img-turbo实现了高效的图像翻译。该方法适用于配对和未配对任务,并通过优化生成器架构来提升推理速度和结果多样性。CycleGAN-Turbo和pix2pix-turbo在Sketch2Image和Edge2Image等多个图像翻译任务中均表现出色。
blur-kernel-space-exploring - 基于编码模糊核空间的图像去模糊新方法
Github图像去模糊开源项目数据增强模糊内核空间深度学习计算机视觉
这个项目开发了一种新颖的图像去模糊技术,通过编码模糊核空间来处理各种模糊类型。该方法采用交替优化算法,可以处理未知的模糊情况,并且易于集成到深度学习模型中。这一技术不仅适用于图像去模糊,还可用于数据增强和模糊生成等相关任务。
Generative-AI - 多模态图像合成与编辑技术及其分类
Data ModalityGenerative AIGithubMultimodal Image Synthesis and EditingTaxonomyVisual AIGC开源项目
该项目附有一篇综述论文,全面分析了多模态图像合成与编辑(MISE)和视觉AIGC的发展情况,并根据数据模态和模型架构进行了分类研究。通过此项研究,科研人员和技术开发者可以深入了解神经渲染、扩散方法、自回归方法及对抗生成网络(GAN)等不同技术及其应用,帮助更好地掌握多模态图像合成技术的前沿进展与实际应用。
distill-sd - 更小更快速的Stable Diffusion模型,依靠知识蒸馏实现高质量图像生成
GithubStable Diffusion开源项目模型压缩神经网络训练细节预训练检查点
基于知识蒸馏技术开发的小型高速Stable Diffusion模型。这些模型保留了完整版本的图像质量,同时大幅减小了体积和提升了速度。文档详细介绍了数据下载脚本、U-net训练方法和模型参数设置,还支持LoRA训练及从检查点恢复。提供清晰的使用指南和预训练模型,适配快速高效图像生成需求。
CAT - 创新图像恢复模型 强化远程特征建模
GithubTransformer卷积神经网络图像修复开源项目自注意力机制长程依赖
CAT是一种创新的图像恢复模型,采用矩形窗口自注意力机制扩大特征提取范围。模型通过水平和垂直矩形窗口并行聚合特征,实现窗口间交互。结合CNN的局部特性,CAT在全局-局部特征耦合方面表现出色。实验证实该方法在多种图像恢复任务中超越了现有技术水平。
stable-diffusion-2-inpainting - 基于扩散模型的高分辨率图像生成和修复工具
GithubHuggingfaceStable Diffusion人工智能图像生成开源项目模型深度学习计算机视觉
stable-diffusion-2-inpainting是一个基于扩散模型的图像生成和修复工具。该模型能根据文本提示生成高质量图像,并支持高分辨率图像修复。它采用LAMA的掩码生成策略,结合掩码图像的VAE潜在表示作为额外条件。该模型在英语提示下效果最佳,适用于艺术创作、设计和研究等领域。然而,它也存在一些局限性,如无法生成可读文本,对复杂任务表现欠佳。使用时应注意避免生成有害或带有偏见的内容。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号