Project Icon

diagram_detr_r50_finetuned

BPMN形状数据集上的精细调优识别模型

该项目在BPMN形状数据集上,精细调优了kacper-cierzniewski/daigram_detr_r50_albumentations模型,取得了有效的评估表现。通过调整学习率、批量大小以及优化器等超参数,并采用线性学习率调度,该模型在多达500个训练周期中持续优化。最终的训练损失达到0.9817,通过Native AMP混合精度训练技术,该模型在BPMN形状识别任务中具有较高的准确性和稳定性。

my_awesome_model - DistilBERT微调的高效文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
my_awesome_model是一个基于distilbert-base-uncased微调的文本分类模型。该模型在未知数据集上训练,经过3轮迭代后,训练损失降至0.0632,验证损失为0.2355,训练准确率达92.95%。模型采用Adam优化器和多项式衰减学习率。虽然缺乏具体任务信息,但其性能表现显示了良好的文本分类潜力。
bert-base-uncased-finetuned-semeval24 - BERT微调模型在文本分类任务中的出色表现
F1GithubHuggingfacebert-base-uncased准确率开源项目损失模型精调
该微调模型基于google-bert/bert-base-uncased,采用Adam优化器和线性学习率调度策略,经过5个学习周期,在评估集合上取得了0.8254的准确率和0.8237的F1值,适用于需要精确度的文本分类任务。
hierarchical-bert-model - 层级BERT模型的实现及优化方案
Adam优化器GithubHuggingfaceKeras学习率开源项目模型模型图训练超参数
一个基于Keras框架的层级BERT模型实现,通过优化训练参数提升模型性能。模型采用float32精度训练,集成JIT编译技术,并针对性配置了学习率和优化参数。该模型主要应用于层级文本分类任务。
DN-DETR - 创新查询去噪技术加速目标检测训练
DETRGithub开源项目注意力机制深度学习目标检测计算机视觉
DN-DETR通过创新的查询去噪技术加速DETR目标检测模型训练。该方法仅需50%训练周期即可达到基线模型性能,大幅提高训练效率。项目开源了DN-DETR、DN-Deformable-DETR等多个模型实现,并提供详细的模型库、使用指南和安装说明,便于研究者复现结果或将去噪训练应用于其他模型。
efficientdet - EfficientDet目标检测模型的PyTorch实现
COCO数据集EfficientDetGithub开源项目深度学习目标检测计算机视觉
本项目提供了EfficientDet目标检测模型的PyTorch实现。支持COCO数据集的训练、评估和测试,在COCO val2017上达到0.314 mAP。包含预训练权重、视频测试功能和使用说明。适合研究人员和开发者参考使用。
bert-finetuned-ner - BERT微调模型实现高精度命名实体识别
BERTGithubHuggingfaceconll2003命名实体识别开源项目模型模型微调自然语言处理
该项目基于BERT模型,在conll2003数据集上进行微调,专注于命名实体识别任务。模型在评估集上展现出优异性能,精确率达0.9355,召回率为0.9514,F1分数为0.9433。经过3轮训练,采用Adam优化器和线性学习率调度器,模型在命名实体识别领域表现卓越。
vit-base-uppercase-english-characters - 大写英文字符高精度图像分类模型
GithubHuggingfaceadam优化vit-base-uppercase-english-characters准确率图像分类开源项目模型模型微调
该模型基于vit-base-patch16-224-in21k进行了微调,并在pittawat/uppercase-english-characters数据集上达到了0.9573的准确率。训练过程中采用了学习率为0.0002的Adam优化器,损失率为0.3160。使用Transformers 4.26.1和Pytorch 1.13.0等框架版本,显著提升了在图像分类领域的性能。
FinancialBERT-Sentiment-Analysis - 金融BERT模型优化金融文本情感分析精度
BERT模型GithubHuggingface开源项目情感分类模型自然语言处理金融情感分析金融短语库
FinancialBERT-Sentiment-Analysis是一个针对金融领域的BERT模型,通过大规模金融文本预训练和Financial PhraseBank数据集微调,在金融文本情感分析中表现卓越。该模型超越通用BERT和其他金融特定模型,为金融从业者和研究人员提供了高效的文本挖掘工具,无需大量计算资源即可使用。
segformer-b2-finetuned-ade-512-512 - SegFormer模型实现高效语义分割的新方法
GithubHugging FaceHuggingfaceSegFormerTransformer图像分割开源项目模型视觉
SegFormer模型在ADE20K数据集上微调,支持512x512分辨率图像的语义分割,由层次Transformer编码器和轻量级MLP解码头构成,适用于ADE20K和Cityscapes等基准。模型先在ImageNet-1k上预训练,再在下游任务上微调,适合多种分割任务。
AI-generated_images_detector - 高精度AI生成图像检测模型,适用于图像分类任务
AI-generated_images_detectorGithubHuggingface准确率图像分类开源项目模型训练和评估数据
该高精度AI生成图像检测模型专注于图像分类,适用于imagefolder数据集验证。模型训练后达到了0.9736的准确率,能够有效区分生成与真实图像。通过transformers库中的pipeline进行推理,只需将图像传递给模型即可获得分类结果,适用于对图像分类精度要求较高的应用,能够有效提升AI生成内容的识别能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号