Project Icon

contrastive-unpaired-translation

基于对比学习的无监督图像转换

CUT项目提供了一种基于PyTorch的无监督图像间转换方法,采用局部对比学习和对抗学习技术。该方法较CycleGAN具备更快的训练速度和更低的内存占用,并且无需手工设计损失函数和反向网络,适合单图像训练。支持Linux或macOS系统及Python 3环境,适合在NVIDIA GPU上运行,整个训练和测试流程简单易操作。该项目由UC Berkeley和Adobe Research团队开发,并在ECCV 2020会议中展示。

gen-cv - 综合AI图像生成处理与分析的开源加速器
Azure Machine LearningGithubOpenAIStable DiffusionVision AI图像处理开源项目
gen-cv是一个丰富的开源资源库,集合了多种图像生成、处理和分析的示例。该项目整合了Azure Machine Learning、Computer Vision、OpenAI和Stable Diffusion等先进技术,涵盖引导式图像生成、视频分析、头像创建和模型微调等领域。通过提供实用示例,gen-cv旨在帮助开发者探索和实现先进的计算机视觉解决方案,推动AI视觉技术的应用和创新。
DEADiff - DEADiff模型实现高效风格化图像生成
DEADiffGithub图像风格化开源项目扩散模型文本到图像生成计算机视觉
DEADiff是一种风格化扩散模型,通过参考图像风格和文本提示生成新颖图像。该模型利用解耦表示技术,实现高效风格迁移和文本引导图像生成。DEADiff可将多种风格应用于不同场景,同时保持内容准确性。这项研究由中国科学技术大学和字节跳动的团队完成,并在CVPR 2024上发表。
LooseControl - 通用深度条件生成控制技术
AI绘图ControlNetGithubLooseControl图像生成开源项目深度条件控制
LooseControl是一种提升ControlNet能力的深度条件生成控制技术,实现了更通用的深度条件控制。该开源项目提供UI界面和Python API,支持基于粗略深度图的图像生成和风格保持编辑。LooseControl适用于多种场景,为计算机视觉和图像生成领域提供了新的研究方向。
joliGEN - 集成GAN、扩散和一致性模型的AI图像生成框架
GANGithubJoliGEN图像处理开源项目扩散模型生成式AI
joliGEN是一个集成框架,用于训练自定义的AI图像转换模型。该框架集成了GAN、扩散和一致性模型,可用于配对和无配对的图像转换任务。joliGEN适用于图像生成控制、增强现实和数据集增强等实际场景。它支持快速稳定的训练过程,并提供REST API服务简化部署。凭借丰富的选项和参数,joliGEN可应用于多种图像生成和处理任务。
InstructCV - 自然语言指令引导的多任务计算机视觉模型
GithubInstructCV开源项目文本到图像生成深度学习生成扩散模型计算机视觉
InstructCV 项目通过指令调优的文本到图像扩散模型,简化了计算机视觉任务的执行方式。该项目将多个计算机视觉任务转化为文本描述的图像生成问题,并使用涵盖分割、物体检测、深度估计和分类等任务的数据集进行训练。利用大型语言模型生成任务提示,该模型从生成模型转变为指令引导的多任务视觉学习者。项目实现了多种环境配置,包括在Huggingface Spaces的Gradio演示和Google Colab的运行示例,并支持PyTorch 1.5+。
EasyCV - 基于PyTorch的全能计算机视觉工具箱,支持自监督学习和Transformer模型
EasyCVGithubPyTorch图像分类开源项目目标检测自监督学习
EasyCV是基于PyTorch的全能计算机视觉工具箱,专注于自监督学习、Transformer模型和主要视觉任务,包括图像分类、度量学习、目标检测和姿态估计。该工具箱提供了最先进的自监督算法如SimCLR、MoCO V2、Swav、DINO和基于掩码图像建模的MAE。它拥有简单综合的推理接口,并支持多种预训练模型。EasyCV支持多GPU和多工作者训练,利用DALI优化数据处理,使用TorchAccelerator和fp16加速训练,并通过PAI-Blade优化推理性能。
OpenAI-CLIP - 从零开始实现CLIP模型:探索文本与图像的多模态关联
CLIPGithubOpenAI图像编码器多模态开源项目文本编码器
本项目实现了CLIP模型,基于PyTorch进行开发,通过训练文本和图像数据,探索其相互关系。详细的代码指南和实用工具展示了模型在自然语言监督任务中的表现和实际应用,适合多模态学习的研究者和开发者使用。
EnlightenGAN - 无监督深度光照增强技术
EnlightenGANGithub图像增强开源项目无配对监督深度学习计算机视觉
EnlightenGAN是一种用于增强低光照图像质量的深度学习方法。该技术采用无监督学习方式,无需配对的低光/正常光照图像进行训练。EnlightenGAN基于生成对抗网络(GAN)架构,能有效提升各种复杂场景下的图像亮度和细节。在多个公开数据集上,EnlightenGAN展现出优秀性能,为计算机视觉和图像处理领域提供了新的解决方案。
custom-diffusion - 文本到图像扩散模型微调方法
Custom DiffusionGithubStable Diffusion图像生成多概念定制开源项目文本到图像扩散模型
该项目提供了一种高效的文本到图像扩散模型微调方法。只需调整部分模型参数,即可在短时间内完成训练,并减少存储需求。项目还支持多概念组合,附带新数据集和完整的训练步骤。适用于多种类别和应用场景。
git-base-coco - 应用于多任务的图像文本生成模型
COCOGITGithubHuggingface图像识别开源项目模型模型训练视觉问答
GIT是一种基于Transformer的图像文本生成模型,进行了COCO数据集的微调。其设计提升了在图像和视频描述以及问答上的能力。模型结合了CLIP图像令牌与文本令牌进行训练,能够有效预测下一个文本令牌。GIT被应用于图像和视频的标题生成、视觉问答和图像分类等视觉任务,利用大量图像文本对进行训练,实现了多样化的视觉语言任务,提升了视觉理解和交互的效果。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号