Project Icon

machine-learning

机器学习入门,掌握Python与数据分析

这个开源项目旨在帮助自学者系统地学习机器学习。内容涵盖Python基础、数据分析、数据可视化、数学和统计,以及机器学习和深度学习的多个在线课程和教程。通过推荐的YouTube视频、Coursera课程和开源项目,提供从基础到高级的学习资源,帮助学习者提升编程与数据分析能力,并逐步进入机器学习和深度学习的领域。

scikit-learn - Python机器学习的核心工具库
GithubPythonscikit-learn开源项目数据科学机器学习
scikit-learn是基于SciPy构建的Python机器学习库,提供高效的数据挖掘和分析工具。支持分类、回归、聚类等多种机器学习任务,自2007年启动以来由志愿者维护,已成为广受欢迎的开源项目。其特点包括易用性、高性能和完善的文档,在学术和工业领域得到广泛应用。
pytorch-deep-learning - 深入PyTorch的深度学习实用教程
GithubPyTorch开源项目深度学习神经网络计算机视觉迁移学习
本课程涵盖从基础到高级的深度学习概念,通过实践教学与丰富的视频材料,讲解PyTorch操作和应用。包括神经网络分类、计算机视觉和数据集处理等主题,适合希望深化机器学习理解和应用的学习者。课程包括最新的PyTorch 2.0教程,确保内容的时效性和专业性。
Awesome-System-for-Machine-Learning - 机器学习系统研究资源汇总
AI系统GithubMachine Learning分布式计算大数据开源项目自动化机器学习
此项目汇集了机器学习系统研究的丰富资源,包括数据处理、训练系统和推理系统的开源代码与论文。项目由专门团队维护并定期更新,提供书籍、视频、课程和博客等学习材料,还推荐多篇系统设计的必读白皮书和研究论文,适合各个学习阶段。
cs-self-learning - 全面系统的计算机科学自学开源指南
CS自学Github开源课程开源项目编程语言计算机科学项目实践
这是一份全面的计算机科学自学指南,涵盖编程语言、算法、人工智能等多个领域。指南提供系统化学习路径,汇集优质开源课程资源和项目实践经验。内容包括多种主流编程语言、数学基础、计算机系统、网络、操作系统、编译原理、机器学习等核心领域。通过完成多个实际项目,学习者可以全面提升编程能力和解决问题的技巧。经过2-3年的学习,自学者可以掌握扎实的理论基础和实践能力,为未来的科研或就业做好准备。该指南适合计算机专业学生和有志于转行IT行业的人士使用。
www.mlcompendium.com - 机器学习与深度学习资源大全,免费公开,便于学习与作者互动
CompendiumDeep LearningGitBookGitHubGithubMachine Learning开源项目
项目为免费非营利教育工具,包含约500个机器学习及深度学习主题,如算法、特征选择、深度学习、NLP、音频处理等,帮助用户节省搜索时间,连接优秀作者。项目持续更新,支持社区贡献,致力于知识共享和教育普及。
machine-learning-book - 深入使用PyTorch和Scikit-Learn的机器学习指南
GithubMachine LearningPackt PublishingPyTorchScikit-LearnSebastian Raschka开源项目
该书介绍了如何使用PyTorch和Scikit-Learn进行机器学习,内容包含从数据预处理到高级深度学习模型的实现。主要涵盖分类、回归、聚类、神经网络、自然语言处理、生成对抗网络及强化学习等主题,通过实用的代码示例和实际应用帮助读者掌握机器学习技术。无论是初学者还是有经验的开发者,都可以将其作为理解和应用机器学习的重要参考资料。
Great-Deep-Learning-Tutorials - 全面深度学习教程和实用资源集锦
GithubPyTorch人工智能开源项目机器学习深度学习神经网络
该项目汇集了深度学习领域的优质教程和资源,覆盖计算机视觉、自然语言处理、语音处理等多个方向。内容包括入门教程、高级课程、技术博客和开源代码库,涵盖模型量化、AutoML、图神经网络等前沿主题。同时提供深度模型训练的实践指南,适合系统学习和深入研究深度学习的人员参考。
pattern_classification - 机器学习和模式分类资源集合
Github开源项目数据预处理机器学习模型评估模式分类聚类分析
该项目汇集了机器学习和模式分类领域的全面资源。内容包括教程、示例代码、数据集、工具和技术说明等。涵盖数据预处理、特征选择、多种算法实现等方面。还提供数据可视化案例、统计模式分类研究、相关书籍和讲座资料。适合学习和应用机器学习技术的研究者和从业者参考使用。
DeepLearningProject - 全面教程涵盖数据集创建与深度学习
GithubHarvard UniversityPyTorchPython开源项目机器学习深度学习
本教程详细介绍了从创建自定义数据集到应用传统和深度学习算法的完整机器学习管道。基于哈佛大学高级数据科学课程项目,内容更新为PyTorch版本,适合希望深入理解和实践机器学习的用户。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号