Project Icon

tpotce

多功能蜜罐平台强化网络安全监控

T-Pot是一个多架构蜜罐平台,集成20多种蜜罐和多种可视化选项。该平台利用Elastic Stack进行数据分析,通过实时攻击地图展示攻击情况。T-Pot支持在虚拟机、物理硬件和云环境中部署,集成多种安全工具,可用于网络安全监控和威胁情报收集。

T-Pot - The All In One Multi Honeypot Platform

T-Pot

T-Pot is the all in one, optionally distributed, multiarch (amd64, arm64) honeypot plattform, supporting 20+ honeypots and countless visualization options using the Elastic Stack, animated live attack maps and lots of security tools to further improve the deception experience.

TL;DR

  1. Meet the system requirements. The T-Pot installation needs at least 8-16 GB RAM, 128 GB free disk space as well as a working (outgoing non-filtered) internet connection.
  2. Download or use a running, supported distribution.
  3. Install the ISO with as minimal packages / services as possible (ssh required)
  4. Install curl: $ sudo [apt, dnf, zypper] install curl if not installed already
  5. Run installer as non-root from $HOME:
env bash -c "$(curl -sL https://github.com/telekom-security/tpotce/raw/master/install.sh)"
  • Follow instructions, read messages, check for possible port conflicts and reboot



Disclaimer

  • You install and run T-Pot within your responsibility. Choose your deployment wisely as a system compromise can never be ruled out.
  • For fast help research the Issues and Discussions.
  • The software is designed and offered with best effort in mind. As a community and open source project it uses lots of other open source software and may contain bugs and issues. Report responsibly.
  • Honeypots - by design - should not host any sensitive data. Make sure you don't add any.
  • By default, your data is submitted to Sicherheitstacho. You can disable this in the config (~/tpotce/docker-compose.yml) by removing the ewsposter section. But in this case sharing really is caring!

Technical Concept

T-Pot's main components have been moved into the tpotinit Docker image allowing T-Pot to now support multiple Linux distributions, even macOS and Windows (although both limited to the feature set of Docker Desktop). T-Pot uses docker and docker compose to reach its goal of running as many honeypots and tools as possible simultaneously and thus utilizing the host's hardware to its maximum.

T-Pot offers docker images for the following honeypots ...

... alongside the following tools ...

  • Autoheal a tool to automatically restart containers with failed healthchecks.
  • Cyberchef a web app for encryption, encoding, compression and data analysis.
  • Elastic Stack to beautifully visualize all the events captured by T-Pot.
  • Elasticvue a web front end for browsing and interacting with an Elasticsearch cluster.
  • Fatt a pyshark based script for extracting network metadata and fingerprints from pcap files and live network traffic.
  • T-Pot-Attack-Map a beautifully animated attack map for T-Pot.
  • P0f is a tool for purely passive traffic fingerprinting.
  • Spiderfoot an open source intelligence automation tool.
  • Suricata a Network Security Monitoring engine.

... to give you the best out-of-the-box experience possible and an easy-to-use multi-honeypot system.

Technical Architecture

Architecture

The source code and configuration files are fully stored in the T-Pot GitHub repository. The docker images are built and preconfigured for the T-Pot environment.

The individual Dockerfiles and configurations are located in the docker folder.

Services

T-Pot offers a number of services which are basically divided into five groups:

  1. System services provided by the OS
    • SSH for secure remote access.
  2. Elastic Stack
    • Elasticsearch for storing events.
    • Logstash for ingesting, receiving and sending events to Elasticsearch.
    • Kibana for displaying events on beautifully rendered dashboards.
  3. Tools
    • NGINX provides secure remote access (reverse proxy) to Kibana, CyberChef, Elasticvue, GeoIP AttackMap, Spiderfoot and allows for T-Pot sensors to securely transmit event data to the T-Pot hive.
    • CyberChef a web app for encryption, encoding, compression and data analysis.
    • Elasticvue a web front end for browsing and interacting with an Elasticsearch cluster.
    • T-Pot Attack Map a beautifully animated attack map for T-Pot.
    • Spiderfoot an open source intelligence automation tool.
  4. Honeypots
    • A selection of the 23 available honeypots based on the selected docker-compose.yml.
  5. Network Security Monitoring (NSM)
    • Fatt a pyshark based script for extracting network metadata and fingerprints from pcap files and live network traffic.
    • P0f is a tool for purely passive traffic fingerprinting.
    • Suricata a Network Security Monitoring engine.

User Types

During the installation and during the usage of T-Pot there are two different types of accounts you will be working with. Make sure you know the differences of the different account types, since it is by far the most common reason for authentication errors.

ServiceAccount TypeUsername / GroupDescription
SSHOS<OS_USERNAME>The user you chose during the installation of the OS.
NginxBasicAuth<WEB_USER><web_user> you chose during the installation of T-Pot.
CyberChefBasicAuth<WEB_USER><web_user> you chose during the installation of T-Pot.
ElasticvueBasicAuth<WEB_USER><web_user> you chose during the installation of T-Pot.
Geoip Attack MapBasicAuth<WEB_USER><web_user> you chose during the installation of T-Pot.
SpiderfootBasicAuth<WEB_USER><web_user> you chose during the installation of T-Pot.
T-PotOStpottpot this user / group is always reserved by the T-Pot services.
T-Pot LogsBasicAuth<LS_WEB_USER>LS_WEB_USER are automatically managed.



System Requirements

Depending on the supported Linux distro images, hive / sensor, installing on real hardware, in a virtual machine or other environments there are different kind of requirements to be met regarding OS, RAM, storage and network for a successful installation of T-Pot (you can always adjust ~/tpotce/docker-compose.yml and ~/tpotce/.envto your needs to overcome these requirements).

T-Pot TypeRAMStorageDescription
Hive16GB256GB SSDAs a rule of thumb, the more sensors & data, the more RAM and storage is needed.
Sensor8GB128GB SSDSince honeypot logs are persisted (~/tpotce/data) for 30 days, storage depends on attack volume.

T-Pot does require ...

  • an IPv4 address via DHCP or statically assigned
  • a working, non-proxied, internet connection ... for a successful installation and operation.

    If you need proxy support or otherwise non-standard features, you should check the docs of the supported Linux distro images and / or the Docker documentation.

Running in a VM

All of the supported Linux distro images will run in a VM which means T-Pot will just run fine. The following were tested / reported to work:

Some configuration / setup hints:

  • While Intel versions run stable, Apple Silicon (arm64) support has known issues which in UTM may require switching Display to Console Only during initial installation of the OS and afterwards back to Full Graphics.
  • During configuration you may need to enable promiscuous mode for the network interface in order for fatt, suricata and p0f to work properly.
  • If you want to use a wifi card as a primary NIC for T-Pot, please be aware that not all network interface drivers support all wireless cards. In VirtualBox e.g. you have to choose the "MT SERVER" model of the NIC.

Running on Hardware

T-Pot is only limited by the hardware support of the supported Linux distro images. It is recommended to check the HCL (hardware compatibility list) and test the supported distros with T-Pot before investing in dedicated hardware.

Running in a Cloud

T-Pot is tested on and known to run on ...

  • Telekom OTC using the post install method ... others may work, but remain untested.

Some users report working installations on other clouds and hosters, i.e. Azure and GCP. Hardware requirements may be different. If you are unsure you should research issues and discussions and run some functional tests. With T-Pot 24.04.0 and forward we made sure to remove settings that were known to interfere with cloud based installations.

Required Ports

Besides the ports generally needed by the OS, i.e. obtaining a DHCP lease, DNS, etc. T-Pot will require the following ports for incoming / outgoing connections. Review the T-Pot Architecture for a visual representation. Also some ports will show up as duplicates, which is fine since used in different editions.

PortProtocolDirectionDescription
80, 443tcpoutgoingT-Pot Management: Install, Updates, Logs (i.e. OS, GitHub, DockerHub, Sicherheitstacho, etc.
64294tcpincomingT-Pot Management: Sensor data transmission to hive (through NGINX reverse proxy) to 127.0.0.1:64305
64295tcpincomingT-Pot Management: Access to SSH
64297tcpincomingT-Pot Management Access to NGINX reverse proxy
5555tcpincomingHoneypot: ADBHoney
5000udpincomingHoneypot: CiscoASA
8443tcpincoming
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号