Project Icon

openmodelz

开源平台简化机器学习模型的部署和扩展

OpenModelZ是一个开源平台,简化了机器学习模型的部署和扩展过程。它支持将模型部署到任何集群,提供自动扩展、多框架兼容、Gradio/Streamlit/Jupyter集成等功能。用户可从单机起步,轻松扩展到集群,每个部署都有独立子域名。该平台自动处理基础设施,让开发者专注于模型本身。

OpenModelZ

discord invitation link trackgit-views docs all-contributors CI PyPI version Coverage Status

What is OpenModelZ?

OpenModelZ ( mdz ) is tool to deploy your models to any cluster (GCP, AWS, Lambda labs, your home lab, or even a single machine).

Getting models into production is hard for data scientists and SREs. You need to configure the monitoring, logging, and scaling infrastructure, with the right security and permissions. And then setup the domain, SSL, and load balancer. This can take weeks or months of work even for a single model deployment.

You can now use mdz deploy to effortlessly deploy your models. OpenModelZ handles all the infrastructure setup for you. Each deployment gets a public subdomain, like http://jupyter-9pnxd.2.242.22.143.modelz.live, making it easily accessible.

OpenModelZ

Benefits

OpenModelZ provides the following features out-of-the-box:

  • 📈 Auto-scaling from 0: The number of inference servers could be scaled based on the workload. You could start from 0 and scale it up to 10+ replicas easily.
  • 📦 Support any machine learning framework: You could deploy any machine learning framework (e.g. vLLM/triton-inference-server/mosec etc.) with a single command. Besides, you could also deploy your own custom inference server.
  • 🔬 Gradio/Streamlit/Jupyter support: We provide a robust prototyping environment with support for Gradio, Streamlit, jupyter and so on. You could visualize your model's performance and debug it easily in the notebook, or deploy a web app for your model with a single command.
  • 🏃 Start from a single machine to a cluster of machines: You could start from a single machine and scale it up to a cluster of machines without any hassle, with a single command mdz server start.
  • 🚀 Public accessible subdomain for each deployment ( optional ) : We provision a separate subdomain for each deployment without any extra cost and effort, making each deployment easily accessible from the outside.

OpenModelZ is the foundational component of the ModelZ platform available at modelz.ai.

How it works

Get a server (could be a cloud VM, a home lab, or even a single machine) and run the mdz server start command. OpenModelZ will bootstrap the server for you.

$ mdz server start
🚧 Creating the server...
🚧 Initializing the load balancer...
🚧 Initializing the GPU resource...
🚧 Initializing the server...
🚧 Waiting for the server to be ready...
🐋 Checking if the server is running...
🐳 The server is running at http://146.235.213.84.modelz.live
🎉 You could set the environment variable to get started!

export MDZ_URL=http://146.235.213.84.modelz.live
$ export MDZ_URL=http://146.235.213.84.modelz.live

Then you could deploy your model with a single command mdz deploy and get the endpoint:

$ mdz deploy --image modelzai/gradio-stable-diffusion:23.03 --name sdw --port 7860 --gpu 1
Inference sd is created
$ mdz list
 NAME  ENDPOINT                                                 STATUS  INVOCATIONS  REPLICAS 
 sdw   http://sdw-qh2n0y28ybqc36oc.146.235.213.84.modelz.live   Ready           174  1/1      
       http://146.235.213.84.modelz.live/inference/sdw.default                                

Quick Start 🚀

Install mdz

You can install OpenModelZ using the following command:

pip install openmodelz

You could verify the installation by running the following command:

mdz

Once you've installed the mdz you can start deploying models and experimenting with them.

Bootstrap mdz

It's super easy to bootstrap the mdz server. You just need to find a server (could be a cloud VM, a home lab, or even a single machine) and run the mdz server start command.

Notice: We may require the root permission to bootstrap the mdz server on port 80.

$ mdz server start
🚧 Creating the server...
🚧 Initializing the load balancer...
🚧 Initializing the GPU resource...
🚧 Initializing the server...
🚧 Waiting for the server to be ready...
🐋 Checking if the server is running...
Agent:
 Version:       v0.0.13
 Build Date:    2023-07-19T09:12:55Z
 Git Commit:    84d0171640453e9272f78a63e621392e93ef6bbb
 Git State:     clean
 Go Version:    go1.19.10
 Compiler:      gc
 Platform:      linux/amd64
🐳 The server is running at http://192.168.71.93.modelz.live
🎉 You could set the environment variable to get started!

export MDZ_URL=http://192.168.71.93.modelz.live

The internal IP address will be used as the default endpoint of your deployments. You could provide the public IP address of your server to the mdz server start command to make it accessible from the outside world.

# Provide the public IP as an argument
$ mdz server start 1.2.3.4

You could also specify the registry mirror to speed up the image pulling process. Here is an example:

$ mdz server start --mirror-endpoints https://docker.mirrors.sjtug.sjtu.edu.cn

Create your first UI-based deployment

Once you've bootstrapped the mdz server, you can start deploying your first applications. We will use jupyter notebook as an example in this tutorial. You could use any docker image as your deployment.

$ mdz deploy --image jupyter/minimal-notebook:lab-4.0.3 --name jupyter --port 8888 --command "jupyter notebook --ip='*' --NotebookApp.token='' --NotebookApp.password=''"
Inference jupyter is created
$ mdz list
 NAME     ENDPOINT                                                   STATUS  INVOCATIONS  REPLICAS
 jupyter  http://jupyter-9pnxdkeb6jsfqkmq.192.168.71.93.modelz.live  Ready           488  1/1
          http://192.168.71.93/inference/jupyter.default                                                                         

You could access the deployment by visiting the endpoint URL. The endpoint will be automatically generated for each deployment with the following format: <name>-<random-string>.<ip>.modelz.live.

It is http://jupyter-9pnxdkeb6jsfqkmq.192.168.71.93.modelz.live in this case. The endpoint could be accessed from the outside world as well if you've provided the public IP address of your server to the mdz server start command.

jupyter notebook

Create your first OpenAI compatible API server

You could also create API-based deployments. We will use OpenAI compatible API server with Bloomz 560M as an example in this tutorial.

$ mdz deploy --image modelzai/llm-bloomz-560m:23.07.4 --name simple-server
Inference simple-server is created
$ mdz list
 NAME           ENDPOINT                                                         STATUS  INVOCATIONS  REPLICAS 
 jupyter        http://jupyter-9pnxdkeb6jsfqkmq.192.168.71.93.modelz.live        Ready           488  1/1      
                http://192.168.71.93/inference/jupyter.default                                                 
 simple-server  http://simple-server-lagn8m9m8648q6kx.192.168.71.93.modelz.live  Ready             0  1/1      
                http://192.168.71.93/inference/simple-server.default                                           

You could use OpenAI python package and the endpoint http://simple-server-lagn8m9m8648q6kx.192.168.71.93.modelz.live in this case, to interact with the deployment.

import openai
openai.api_base="http://simple-server-lagn8m9m8648q6kx.192.168.71.93.modelz.live"
openai.api_key="any"

# create a chat completion
chat_completion = openai.ChatCompletion.create(model="bloomz", messages=[
    {"role": "user", "content": "Who are you?"},
    {"role": "assistant", "content": "I am a student"},
    {"role": "user", "content": "What do you learn?"},
], max_tokens=100)

Scale your deployment

You could scale your deployment by using the mdz scale command.

$ mdz scale simple-server --replicas 3

The requests will be load balanced between the replicas of your deployment.

You could also tell the mdz to autoscale your deployment based on the inflight requests. Please check out the Autoscaling documentation for more details.

Debug your deployment

Sometimes you may want to debug your deployment. You could use the mdz logs command to get the logs of your deployment.

$ mdz logs simple-server
simple-server-6756dd67ff-4bf4g: 10.42.0.1 - - [27/Jul/2023 02:32:16] "GET / HTTP/1.1" 200 -
simple-server-6756dd67ff-4bf4g: 10.42.0.1 - - [27/Jul/2023 02:32:16] "GET / HTTP/1.1" 200 -
simple-server-6756dd67ff-4bf4g: 10.42.0.1 - - [27/Jul/2023 02:32:17] "GET / HTTP/1.1" 200 -

You could also use the mdz exec command to execute a command in the container of your deployment. You do not need to ssh into the server to do that.

$ mdz exec simple-server ps
PID   USER     TIME   COMMAND
    1 root       0:00 /usr/bin/dumb-init /bin/sh -c python3 -m http.server 80
    7 root       0:00 /bin/sh -c python3 -m http.server 80
    8 root       0:00 python3 -m http.server 80
    9 root       0:00 ps
$ mdz exec simple-server -ti bash
bash-4.4# 

Or you could port-forward the deployment to your local machine and debug it locally.

$ mdz port-forward simple-server 7860
Forwarding inference simple-server to local port 7860

Add more servers

You could add more servers to your cluster by using the mdz server join command. The mdz server will be bootstrapped on the server and join the cluster automatically.

$ mdz server join <internal ip address of the previous server>
$ mdz server list
 NAME   PHASE  ALLOCATABLE      CAPACITY        
 node1  Ready  cpu: 16          cpu: 16         
               mem: 32784748Ki  mem: 32784748Ki 
               gpu: 1           gpu: 1      
 node2  Ready  cpu: 16          cpu: 16         
               mem: 32784748Ki  mem: 32784748Ki 
               gpu: 1           gpu: 1      

Label your servers

You could label your servers to deploy your models to specific servers. For example, you could label your servers with gpu=true and deploy your models to servers with GPUs.

$ mdz server label node3 gpu=true type=nvidia-a100
$ mdz deploy ... --node-labels gpu=true,type=nvidia-a100

Architecture

OpenModelZ is inspired by the k3s and OpenFaaS, but designed specifically for machine learning deployment. We keep the core of the system simple, and easy to extend.

You do not need to read this section if you just want to deploy your models. But if you want to understand how OpenModelZ works, this section is for you.

OpenModelZ

OpenModelZ is composed of two components:

  • Data Plane: The data plane is responsible for the servers. You could use mdz server to manage the servers. The data plane is designed to be stateless and scalable. You could easily scale the data plane by adding more servers to the cluster. It uses k3s under the hood, to support VMs, bare-metal, and IoT devices (in the future). You could also deploy OpenModelZ on a existing kubernetes cluster.
  • Control Plane: The control plane is responsible for the deployments. It manages the deployments and the underlying resources.

A request will be routed to the inference servers by the load balancer. And the autoscaler will scale the number of inference servers based on the workload. We provide a domain *.modelz.live by default, with the help of a wildcard DNS server to support the public accessible subdomain for each deployment. You could also use your own domain.

You could check out the architecture documentation for more details.

Roadmap 🗂️

Please checkout ROADMAP.

Contribute 😊

We welcome all kinds of contributions from the open-source community, individuals, and partners.

Contributors ✨

项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号