Project Icon

io

由 TensorFlow SIG-IO 维护的数据集、流式处理和文件系统扩展

TensorFlow I/O 扩展了 TensorFlow 的数据处理功能,支持多种文件系统和格式,简化数据集访问。通过 tensorflow-io,可直接使用 HTTP/HTTPS 读取和处理数据,无需下载或存储。此外,该项目支持 Docker 镜像和 R 包,兼容最新的 TensorFlow 版本,并集成多种系统和云服务。详细信息和使用示例请参考官方文档。

stanford-tensorflow-tutorials - CS 20课程的TensorFlow深度学习代码示例和课程进度
CS 20GithubPythonTensorFlowstanford-tensorflow-tutorials开源项目深度学习
提供斯坦福CS 20课程的TensorFlow代码示例和详细课程笔记,涵盖Python 3.6与TensorFlow 1.4.1,实时更新课程进度,包含前一年课程的资源。详细信息见课程大纲和设置指南。
serving - 灵活且高效的机器学习模型推理平台
DockerGithubTensorFlow Serving开源项目机器学习模型部署高性能推理
TensorFlow Serving 是一个为生产环境设计的灵活且高性能的机器学习模型推理系统。它管理训练后的模型生命周期,通过高效查询表提供版本化访问,支持多模型和多版本同时部署。系统支持 gRPC 和 HTTP 推理端点,允许无缝部署新版本,支持金丝雀发布和 A/B 测试,并且延迟极低。调度器将推理请求分组以在 GPU 上联合执行,支持包括 TensorFlow 模型、嵌入、词汇表和特征转换在内的多种服务对象。
TensorFlow-Examples - 探索TensorFlow的最佳实践与全面教程
GithubTensorFlow开源项目数据管理机器学习深度学习神经网络
TensorFlow-Examples提供针对TensorFlow 1和2的详尽教程,涵盖从基础操作到高级模型如深度神经网络,适合初学者通过详细的笔记本和代码解析深入学习,同时介绍最新的API使用实践,如layers、estimator和dataset。
gnn - 用于TensorFlow平台的图神经网络库,支持异构和同构图
GithubKeras层TensorFlow GNN分布式图采样工具图神经网络开源项目数据准备工具
TensorFlow GNN是一个用于TensorFlow平台的图神经网络库,支持异构和同构图。它提供了GraphTensor类型来表示多类型节点和边,数据准备工具以及高效的图采样器。库中包含可直接使用的模型和Keras层,提供高层次的训练API。TF-GNN广泛应用于各种图挖掘任务,用户可在Google Colab上无需安装直接运行示例。它兼容TensorFlow 2.12及以上版本和相关GPU驱动,主要在Linux环境测试。
tfx - 基于TensorFlow的生产级机器学习流水线平台
Apache AirflowGithubGoogleTFXTensorFlow开源项目机器学习平台
TFX是Google开发的基于TensorFlow的生产级机器学习平台,提供配置框架来搭建多个TFX组件的机器学习流水线。该流水线可以用Apache Airflow和Kubeflow Pipelines进行编排,组件和编排系统都可扩展,支持ML Metadata后端来实现实验追踪和模型热启动等高级功能。TFX适用于Python 3.9至3.10,兼容多种主要依赖库。
tensorflow-deep-learning - TensorFlow深度学习教程
GithubTensorFlow开源项目深度学习神经网络训练课程
本项目通过展示如何使用TensorFlow和Keras解决多种问题,教授深度学习的基本技能及其应用。课程内容包括关键视频教程、实践练习和项目实战,确保学习者能通过动手操作全面理解深度学习。适合任何级别的学者,帮助你提升个人和职业技能。
TensorFlow.NET - 用 C# 实现完整的 Tensorflow API,允许 .NET 开发人员使用跨平台的 .NET Standard 框架开发、训练和部署机器学习模型
.NETGithubKerasTensorFlowTensorFlow.NET开源项目机器学习
TensorFlow.NET为.NET Standard框架提供了TensorFlow绑定,使.NET开发者能够使用C#或F#进行机器学习模型的开发、训练和部署。项目内置Keras高级接口,支持将Python代码无缝移植到.NET环境,适用于Windows、Linux和MacOS系统,并支持CPU和GPU版本。
kubeflow - 简单、可移植且可扩展的Kubernetes上的AI/ML平台
AIGithubKubeflowKubernetes开源项目机器学习
Kubeflow项目专注于在Kubernetes上简化、可移植且可扩展的AI/ML解决方案。它包含多个开源组件,支持机器学习生命周期的各个阶段,如模型服务、实验管理和数据流水线等。提供丰富的官方文档和社区支持,用户可以通过GitHub获取详细信息和技术支持,这是构建AI/ML应用的理想工具。
addons - 扩展TensorFlow功能的开源库
APIGithubTensorFlow Addons开源项目机器学习维护模式
TensorFlow Addons是一个开源库,提供了不在核心TensorFlow中的新增功能,包括操作符、层、指标、损失和优化器等。尽管该项目计划在2024年5月结束维护,但它仍然在许多机器学习项目中扮演重要角色。推荐迁移到TensorFlow社区的其他库,如Keras, Keras-CV和Keras-NLP。更多信息请参阅TensorFlow Addons的GitHub页面。
awesome-tensorflow - TensorFlow资源大全 丰富的开源深度学习工具库
GithubTensorFlow人工智能开源项目机器学习深度学习神经网络
这是一个全面的TensorFlow资源列表,涵盖教程、模型、项目、工具等多个方面。开发者和研究人员可以在此找到丰富的学习和应用资源,从入门到进阶。列表内容包括实验、库、视频、论文等,适合不同层次的TensorFlow使用者。这个资源集为探索TensorFlow的各种可能性提供了便利。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号