Project Icon

ttt-lm-pytorch

基于测试时训练的高表达能力RNN模型

ttt-lm-pytorch项目提出了一种新型序列建模层,结合了RNN的线性复杂度和高表达能力的隐藏状态。该方法将隐藏状态设计为机器学习模型,通过自监督学习在测试阶段持续更新,因此被称为测试时训练(TTT)层。项目实现了TTT-Linear和TTT-MLP两种变体,分别采用线性模型和双层MLP作为隐藏状态,为长序列建模提供了高效替代方案。

torchtune - PyTorch原生库助力简化大语言模型开发
GithubLLMPyTorchtorchtune开源项目微调模型训练
torchtune是一个PyTorch原生库,专为简化大语言模型(LLM)的创建、微调和实验而设计。该库提供了主流LLM的PyTorch实现、易用的微调技术配方、YAML配置文件和多种数据集格式支持。torchtune注重与生态系统工具集成,如Hugging Face、EleutherAI评估工具和PyTorch FSDP等。支持多种模型和微调方法,并优化内存效率,适配不同硬件环境。
fast_rnnt - 快速高效的RNN-T损失计算方法
GithubPyTorchRNN-T剪枝开源项目快速实现损失计算
fast_rnnt项目实现了一种快速高效的RNN-T损失计算方法。通过pruned rnnt算法,该方法使用简单joiner网络获取修剪边界,再评估完整非线性joiner网络。项目提供简单、平滑和修剪三种RNN-T损失计算功能,支持pip安装。与其他实现相比,fast_rnnt在计算速度和内存使用方面表现优异。
WaveRNN - 高效神经音频合成技术
GithubPytorchTTSTacotronWaveRNN开源项目语音合成
WaveRNN通过Pytorch实现了Deepmind的高效神经音频合成技术,并包含Tacotron训练支持, 提供两种预训练模型。项目向研究者和开发者开放,并附有详细使用指南与多样化的自定义功能,以便进行高质量的文本到语音转换。
granite-timeseries-ttm-r2 - IBM开源轻量级模型TTM引领时间序列预测新方向
GithubHuggingfaceTinyTimeMixers多变量预测开源项目时间序列预测模型零样本学习预训练模型
IBM Research开源的TinyTimeMixers (TTM)模型仅需1M参数,就能在多变量时间序列预测中超越数十亿参数的基准。TTM支持零样本预测,也可用少量数据微调达到竞争性能。适用于分钟至小时级别的点预测,轻量快速,单GPU或笔记本即可运行。TTM为时间序列预测带来新方向,尤其适合资源受限环境。
mlp - 多层感知器实现n-gram语言模型的开源项目
GithubPyTorch多层感知器开源项目神经网络自动微分自然语言模型
该项目基于Bengio等人2003年的论文,实现了多层感知器(MLP)作为n-gram语言模型。项目提供C、NumPy和PyTorch三种实现,展示了从底层操作到高级抽象的不同层次。通过对比,突出了PyTorch在Tensor处理、自动微分和深度学习层构建方面的优势。相比传统n-gram模型,此方法以较少参数实现更低验证损失,但训练成本较高。
LLM4TS - 大型语言模型和基础模型在时间序列分析中的最新进展
AIGithubLLM基础模型开源项目时间序列预训练
LLM4TS项目整理了时间序列分析领域中大型语言模型和基础模型的最新研究。主要内容包括时间序列LLM的进展、专用基础模型、数据集和重要发现。此外,项目还涵盖了预训练时间序列模型和LLM在推荐系统等相关领域的应用,为研究和实践提供了丰富的资源。
rtp-llm - 大型语言模型推理加速引擎
CUDAGithubrtp-llm多模态输入大语言模型开源项目量化
rtp-llm是阿里巴巴基础模型推理团队开发的大型语言模型推理加速引擎,广泛应用于支持淘宝问答、天猫、菜鸟网络等业务,并显著提升处理效率。该项目基于高性能CUDA技术,支持多种权重格式和多模态输入处理,跨多个硬件后端。新版本增强了GPU内存管理和设备后端,优化了动态批处理功能,提高了用户的使用和体验效率。
Recurrent-LLM - RecurrentGPT 模拟 LSTM 实现无长度限制文本生成
AI As ContentsGithubRecurrent-LLMRecurrentGPTTransformer开源项目长短时记忆
RecurrentGPT 模拟 LSTM 的长短时记忆机制,解决了 GPT 生成文本长度受限的问题。每次生成时段文本并更新记忆,便于用户观测和修改。这提高了文本生成的可解释性和互动性,并展示了其在互动小说和个性化内容创作中的潜力。RecurrentGPT 运用了认知科学和深度学习的流行设计概念,推动了下一代计算机辅助写作系统的发展。
VTimeLLM - 创新视频大语言模型实现精准时刻理解
GithubVTimeLLM多阶段训练大语言模型开源项目时间边界感知视频理解
VTimeLLM是一种先进的视频大语言模型,专注于精细化视频时刻理解和推理。该模型采用边界感知三阶段训练策略,包括图像-文本特征对齐、多事件视频时间边界识别和高质量视频指令微调。这种方法显著提升了模型的时间理解能力,使其在多项视频理解任务中表现优异。
liquid_time_constant_networks - Liquid Time-Constant Networks (LTC) 的代码库
BPTTGithubLiquid time-constant NetworksTensorFlowcontinuous-time modelspython3开源项目
本项目提供了Liquid time-constant Networks等连续时间模型的官方训练资源。支持使用TensorFlow和Python进行模型训练与评估,适用于手势分割、房间占用检测、交通量预测等多种数据集。通过详细的步骤和参数设置指导,科研人员和开发者可以优化并存储训练结果,深入探索连续时间模型的应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号