Project Icon

distilbert-base-uncased-ag-news

使用精简版模型增强新闻文本分类性能

该项目通过使用TextAttack工具和ag_news数据集对distilbert-base-uncased模型进行微调,提升了文本分类的精确度。模型经过5个周期的训练,采用了32的批量大小、2e-05的学习率和128的最大序列长度。在分类任务中采用了交叉熵损失函数。模型在验证集测试中取得了0.9479的最佳准确度。详见TextAttack的GitHub页面。

distilbert-base-uncased-finetuned-sst-2-english - 英语文本情感分析的高精度模型
DistilBERTGithubHuggingface偏见开源项目文本分类模型精度
模型由Hugging Face团队微调,适用于SST-2情感分析任务,精度达到91.3%。针对英语文本特性设计,适合单标签分类。适用Python和Transformers库,易于集成。模型可实现高效特征提取,但可能在特定背景下产生偏差,应在应用前充分测试。开放源代码,Apache-2.0许可支持二次开发。
distilroberta-finetuned-financial-news-sentiment-analysis - DistilRoBERTa模型实现高精度金融新闻情感分析
DistilRobertaGithubHuggingface开源项目机器学习模型自然语言处理金融情感分析金融新闻
这是一个基于distilroberta-base微调的金融新闻情感分析模型。它在金融短语库数据集上训练,达到98.23%的准确率。模型结构包含6层、768维和12个注意力头,共8200万参数,运行速度是RoBERTa-base的两倍。该模型能够有效分析金融新闻的情感倾向,为金融分析和决策提供参考。
roberta-base_topic_classification_nyt_news - 基于roberta-base的高性能新闻主题分类模型
GithubHuggingfaceroberta-base开源项目文本分类新闻模型模型性能训练数据
该文本分类模型基于roberta-base,并针对New York Times新闻数据集进行了微调。模型在测试集上的分类准确率为0.91,可准确识别体育、艺术文化、商业和健康等多个新闻主题。通过结合关键超参数和Adam优化器,模型在精确性和召回率上表现优异。用户可以在Hugging Face平台轻松应用此模型,用于高效的新闻语义分析。
bert-classification-tutorial - BERT与Transformers库实现的新闻文本分类项目
BERTGithub开源项目文本分类深度学习自然语言处理预训练语言模型
这是一个基于BERT模型的现代化文本分类实现项目。项目采用最新的Python、PyTorch和Transformers库,为自然语言处理任务提供了高质量模板。完整流程涵盖数据准备、模型训练和评估,并具有清晰的代码结构和详细说明。虽然主要针对livedoor新闻语料库的分类任务,但也易于适应其他文本分类需求。
distilbert-base-uncased-go-emotions-student - 面向GoEmotions数据集的高效情感分类模型
GithubGoEmotionsHuggingface开源项目文本分类模型模型蒸馏语言模型零样本分类
该模型运用未标注GoEmotions数据集,利用零样本学习技术进行精炼。尽管其性能可能略逊于完全监督下的模型,但它展示了如何将复杂的自然语言推理模型简化为高效的模型,以便在未标注数据上进行分类器训练。
quote-model-delta - DistilBERT微调的高性能文本分类模型
DistilBERTGithubHugging FaceHuggingface开源项目机器学习模型模型微调自然语言处理
quote-model-delta是一个基于DistilBERT微调的文本分类模型,在评估集上表现优异。模型准确率达93.09%,F1分数为0.8656,采用Adam优化器和线性学习率调度器,经3轮训练。适用于高精度文本分类场景,但具体应用范围和局限性有待进一步研究。
distilroberta-base-offensive-hateful-speech-text-multiclassification - 基于DistilRoBERTa的多分类攻击性和仇恨言论检测模型
GithubHuggingfacedistilroberta-base仇恨言论检测多分类开源项目文本分类模型预训练模型
这是一个基于DistilRoBERTa-base的预训练模型,专门用于多分类攻击性和仇恨言论检测。该模型在原创数据集上进行微调,准确率达到94.50%。项目提供了Hugging Face上的数据集和演示空间,以及GitHub上的训练notebook。这为研究人员和开发者提供了一个高效工具,用于识别和分类在线有害内容。
roberta-base-finetuned-autext23 - RoBERTa模型微调版本实现高精度文本分类
GithubHuggingfaceRoBERTa开源项目微调机器学习模型模型评估自然语言处理
roberta-base-finetuned-autext23是基于FacebookAI/roberta-base模型微调的文本分类模型。在评估集上,该模型达到了0.8974的准确率和0.8965的F1分数。模型采用Adam优化器,使用线性学习率调度器,经过5轮训练,批次大小为16。虽然性能优异,但模型的具体应用场景和数据集信息仍需补充。此模型适合需要高精度文本分类的任务,但使用时应注意其潜在限制。
t5-base-finetuned-sst2 - 优化GLUE SST-2数据集准确率的高效文本分类模型
GLUE SST-2GithubHuggingfaceT5准确率开源项目模型模型细节训练过程
T5-base-finetuned-sst2是一个在GLUE SST-2数据集上微调的文本分类模型,准确率达到93.23%。该模型基于编码-解码结构,通过多任务的无监督和有监督学习预训练,将任务转化为文本到文本的格式。在训练中,使用了特定的标记化策略和超参数设置,促进模型快速收敛。适合高效处理文本分类任务的应用场景,提供了对现有分类工具的优化方案。
Gender-Classification - DistilBERT微调模型实现高精度性别分类
DistilBERTGithubHuggingface开源项目性别识别数据分类模型模型训练深度学习
Gender-Classification是一个基于distilbert-base-uncased模型微调的性别分类项目。模型经过5轮训练,在验证集上达到了接近100%的分类准确率。项目采用Adam优化器和线性学习率调度器,学习率为2e-05。模型基于Transformers 4.25.1和PyTorch 1.13.0框架开发,为性别识别任务提供了一个参考实现。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号