Project Icon

darkflow

实时物体检测与分类工具,支持多种YOLO模型

Darkflow是一个用于实时物体检测和分类的开源项目,兼容Python3、Tensorflow、Numpy和OpenCV。用户可以通过pip安装、构建Cython扩展或使用自定义标签进行训练和推理。项目还提供Android演示和支持保存加载protobuf文件,适合跨平台应用。

D-FINE - 精细化分布优化在实时物体检测中的应用
D-FINEDETRFine-grained Distribution RefinementGithub对象检测开源项目自蒸馏
D-FINE是一款实时物体检测工具,通过重新定义DETRs中的边框回归任务为精细化分布优化(FDR)以及引入全局最优定位自蒸馏(GO-LSD),在不增加推理和训练成本的情况下,提升了检测性能。它在复杂街道场景下具有出色的定位能力,对于逆光、运动模糊和密集人群等挑战表现优异。最新版本增强了预训练模型的性能并提供了自定义数据集微调和输入尺寸调整的配置。
LMFlow - 开源大型机器学习模型微调工具箱
GithubLMFlowfinetuning优化开源项目性能模型
LMFlow为大型机器学习模型微调提供一个可扩展、便捷且高效的开源工具箱,支持多种优化功能,如自定义优化器训练、LISA算法等,已广泛应用于机器学习领域。
fvcore - FAIR开发的轻量级计算机视觉库 提供核心共享功能
FAIRGithubPyTorchfvcore开源项目深度学习计算机视觉
fvcore是FAIR开发的轻量级计算机视觉库,为多个框架提供核心共享功能。它包含常用PyTorch组件、FLOP计数工具、参数计数、BatchNorm统计重计算和超参数调度器等特性。该库支持Detectron2、PySlowFast和ClassyVision等项目,所有组件经过严格测试,兼容Python 3.6+和PyTorch环境。
autodistill - 使用大型、较慢的基础模型来训练小型、较快的监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务
AutodistillGithubRoboflowinstance segmentationmachine learningobject detection开源项目
Autodistill利用大型基础模型训练小型快速监督模型,通过自动标注实现模型训练全程无需人工干预,支持对象检测和实例分割任务,并计划扩展至语言模型。可在本地硬件或云端运行,通过插件接口连接基础和目标模型插件,减少依赖和许可证冲突,确保高效便捷的模型训练与部署。
inferflow - 为大语言模型提供高效灵活的推理解决方案
GithubInferflow大语言模型开源项目推理引擎模型服务量化
Inferflow是一款功能强大的大语言模型推理引擎,支持多种文件格式和网络结构。它采用3.5位量化和混合并行推理等创新技术,提高了推理效率。用户通过修改配置文件即可部署新模型,无需编写代码。Inferflow支持GPU/CPU混合推理,为模型部署提供灵活选择。该项目为研究人员和开发者提供了高效易用的LLM推理工具。
Open3D-ML - Open3D 的扩展,用于处理 3D 机器学习任务
3D机器学习GithubOpen3D-MLPyTorchTensorFlow开源项目语义分割
Open3D-ML基于Open3D库,扩展了3D机器学习工具,支持语义点云分割和目标检测等应用。提供预训练模型和训练管道,兼容TensorFlow和PyTorch框架,易于集成到现有项目中。同时,提供数据可视化等通用功能,覆盖多种数据集和算法,提高3D数据处理效率和效果。
flickr_scraper - 专为YOLO训练集收集的Flickr图片爬取工具
FlickrGithubYOLO训练图像爬虫开源项目数据集收集计算机视觉
flickr_scraper是一款针对YOLO训练数据集收集开发的Python工具。该工具通过Flickr API实现关键词搜索和批量下载功能,可快速获取并保存相关图片。它简化了计算机视觉任务的数据准备流程,使用者只需配置API密钥即可开始使用。这个开源项目为研究者和开发者提供了便捷的图像数据采集方式。
overeasy - 无数据集需求的定制视觉模型构建
GithubOvereasy分割图像处理开源项目计算机视觉零样本视觉模型
Overeasy允许无大规模数据集,通过链式预训练零样本视觉模型实现高效图像处理。利用专用工具和工作流,用户可定制端到端管道,支持边框检测及分类。功能涵盖执行图和检测,安装简便,文档详尽,并提供Colab示例。
batchflow - 高效灵活的大规模数据处理和机器学习框架
BatchFlowGithub开源项目数据处理数据流水线机器学习神经网络
BatchFlow是一个专为大规模数据处理和复杂机器学习流程设计的Python库。它提供灵活的批处理生成、确定性和随机管道、数据集合并等功能。支持多种深度学习模型,并具有丰富的层和辅助函数,方便自定义模型。其懒加载机制和高效批处理策略适用于处理超出内存容量的大型数据集,是数据科学和机器学习项目的理想工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号