Project Icon

MMSA

多模态情感分析统一框架助力研究

MMSA是一个多模态情感分析统一框架,集成15种先进MSA模型,支持MOSI、MOSEI和CH-SIMS数据集。框架提供Python API和命令行工具,方便使用。结合MMSA-FET工具包,可进行自定义多模态特征提取实验。MMSA为多模态情感分析研究提供了全面系统的支持平台,助力相关领域的深入研究与创新。

MMSA

MMSA is a unified framework for Multimodal Sentiment Analysis.

Features

  • Train, test and compare multiple MSA models in a unified framework.
  • Supports 15 MSA models, including recent works.
  • Supports 3 MSA datasets: MOSI, MOSEI, and CH-SIMS.
  • Easy to use, provides Python APIs and commandline tools.
  • Experiment with fully customized multimodal features extracted by MMSA-FET toolkit.

1. Get Started

Note: From version 2.0, we packaged the project and uploaded it to PyPI in the hope of making it easier to use. If you don't like the new structure, you can always switch back to v_1.0 branch.

1.1 Use Python API

  • Run pip install MMSA in your python virtual environment.

  • Import and use in any python file:

    from MMSA import MMSA_run
    
    # run LMF on MOSI with default hyper parameters
    MMSA_run('lmf', 'mosi', seeds=[1111, 1112, 1113], gpu_ids=[0])
    
    # tune Self_mm on MOSEI with default hyper parameter range
    MMSA_run('self_mm', 'mosei', seeds=[1111], gpu_ids=[1])
    
    # run TFN on SIMS with altered config
    config = get_config_regression('tfn', 'mosi')
    config['post_fusion_dim'] = 32
    config['featurePath'] = '~/feature.pkl'
    MMSA_run('tfn', 'mosi', config=config, seeds=[1111])
    
    # run MTFN on SIMS with custom config file
    MMSA_run('mtfn', 'sims', config_file='./config.json')
    
  • For more detailed usage, please refer to APIs.

1.2 Use Commandline Tool

  • Run pip install MMSA in your python virtual environment.

  • Use from command line:

    # show usage
    $ python -m MMSA -h
    
    # train & test LMF on MOSI with default parameters
    $ python -m MMSA -d mosi -m lmf -s 1111 -s 1112
    
    # tune 50 times of TFN on MOSEI with custom config file & custom save dir
    $ python -m MMSA -d mosei -m tfn -t -tt 30 --model-save-dir ./models --res-save-dir ./results
    
    # train & test self_mm on SIMS with custom audio features & use gpu2
    $ python -m MMSA -d sims -m self_mm -Fa ./Features/Feature-A.pkl --gpu-ids 2
    
  • For more detailed usage, please refer to Commandline Arguments.

1.3 Clone & Edit the Code

  • Clone this repo and install requirements.
    $ git clone https://github.com/thuiar/MMSA
    
  • Edit the codes to your needs. See Code Structure for a basic review of our code structure.
  • After editing, run the following commands:
    $ cd MMSA-master # make sure you're in the top directory
    $ pip install .
    
  • Then run the code like above sections.
  • To further change the code, you need to re-install the package:
    $ pip uninstall MMSA
    $ pip install .
    
  • If you'd rather run the code without installation(like in v_1.0), please refer to Run Code without Installation.

2. Datasets

MMSA currently supports MOSI, MOSEI, and CH-SIMS dataset. Use the following links to download raw videos, feature files and label files. You don't need to download raw videos if you're not planning to run end-to-end tasks.

SHA-256 for feature files:

`MOSI/Processed/unaligned_50.pkl`:  `78e0f8b5ef8ff71558e7307848fc1fa929ecb078203f565ab22b9daab2e02524`
`MOSI/Processed/aligned_50.pkl`:    `d3994fd25681f9c7ad6e9c6596a6fe9b4beb85ff7d478ba978b124139002e5f9`
`MOSEI/Processed/unaligned_50.pkl`: `ad8b23d50557045e7d47959ce6c5b955d8d983f2979c7d9b7b9226f6dd6fec1f`
`MOSEI/Processed/aligned_50.pkl`:   `45eccfb748a87c80ecab9bfac29582e7b1466bf6605ff29d3b338a75120bf791`
`SIMS/Processed/unaligned_39.pkl`:  `c9e20c13ec0454d98bb9c1e520e490c75146bfa2dfeeea78d84de047dbdd442f`

MMSA uses feature files that are organized as follows:

{
    "train": {
        "raw_text": [],              # raw text
        "audio": [],                 # audio feature
        "vision": [],                # video feature
        "id": [],                    # [video_id$_$clip_id, ..., ...]
        "text": [],                  # bert feature
        "text_bert": [],             # word ids for bert
        "audio_lengths": [],         # audio feature lenth(over time) for every sample
        "vision_lengths": [],        # same as audio_lengths
        "annotations": [],           # strings
        "classification_labels": [], # Negative(0), Neutral(1), Positive(2). Deprecated in v_2.0
        "regression_labels": []      # Negative(<0), Neutral(0), Positive(>0)
    },
    "valid": {***},                  # same as "train"
    "test": {***},                   # same as "train"
}

Note: For MOSI and MOSEI, the pre-extracted text features are from BERT, different from the original glove features in the CMU-Multimodal-SDK.

Note: If you wish to extract customized multimodal features, please try out our MMSA-FET

3. Supported MSA Models

TypeModel NameFromPublished
Single-TaskTFNTensor-Fusion-NetworkEMNLP 2017
Single-TaskEF_LSTMMultimodalDNNACL 2018 Workshop
Single-TaskLF_DNNMultimodalDNNACL 2018 Workshop
Single-TaskLMFLow-rank-Multimodal-FusionACL 2018
Single-TaskMFNMemory-Fusion-NetworkAAAI 2018
Single-TaskGraph-MFNGraph-Memory-Fusion-NetworkACL 2018
Single-TaskMulT(without CTC)Multimodal-TransformerACL 2019
Single-TaskMFMMFMICRL 2019
Multi-TaskMLF_DNNMMSAACL 2020
Multi-TaskMTFNMMSAACL 2020
Multi-TaskMLMFMMSAACL 2020
Multi-TaskSELF_MMSelf-MMAAAI 2021
Single-TaskBERT-MAGMAG-BERTACL 2020
Single-TaskMISAMISAACMMM 2020
Single-TaskMMIMMMIMEMNLP 2021
Single-TaskBBFN (Work in Progress)BBFNICMI 2021
Single-TaskCENETCENETTMM 2022
Multi-TaskTETFNTETFNPR 2023

4. Results

Baseline results are reported in results/result-stat.md

5. Citation

Please cite our paper if you find our work useful for your research:

@inproceedings{yu2020ch,
  title={CH-SIMS: A Chinese Multimodal Sentiment Analysis Dataset with Fine-grained Annotation of Modality},
  author={Yu, Wenmeng and Xu, Hua and Meng, Fanyang and Zhu, Yilin and Ma, Yixiao and Wu, Jiele and Zou, Jiyun and Yang, Kaicheng},
  booktitle={Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics},
  pages={3718--3727},
  year={2020}
}
@inproceedings{yu2021learning,
  title={Learning Modality-Specific Representations with Self-Supervised Multi-Task Learning for Multimodal Sentiment Analysis},
  author={Yu, Wenmeng and Xu, Hua and Yuan, Ziqi and Wu, Jiele},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={12},
  pages={10790--10797},
 
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号