Project Icon

Time-Series-Library

开源深度学习时间序列分析工具库

TSLib为深度学习研究者提供了一个专业开源时间序列分析库,涵盖广泛的应用领域,如长短期预测、数据填充、异常检测和分类。本库提供清晰的代码基础,支持时间序列模型的评估与开发,包括最新的模型评估和深度时间序列研究成果。该工具适合科研和开发人员使用,以推动时间序列分析的未来研究与实践。

Machine-Learning-Tutorials - 机器学习与深度学习教程资源
Github人工智能开源项目数据科学机器学习深度学习统计学
机器学习教程仓库包含机器学习与深度学习的主题分类教程、文章和其他资源,专为数据科学、自然语言处理和机器学习领域的初学者和专家设计。资源涵盖从入门介绍、面试资源到专家视频教程,以及涵盖线性回归、决策树等常用算法的详细讲解及实际案例展示。此外,项目还深入探讨了人工智能、图形处理学习和各种重要的机器学习概念。
anomalib - 视觉异常检测算法开发与部署工具库
AnomalibGithubOpenVINO基准测试开源项目异常检测深度学习
Anomalib是一个专注于视觉异常检测的开源深度学习库。它提供多种先进算法实现,支持模型训练、推理、基准测试和超参数优化。该库基于Lightning框架开发,简化了代码结构,并支持模型导出为OpenVINO格式以加速推理。Anomalib还包含便捷的推理工具,方便用户快速部署异常检测模型。其模块化设计和完善的文档使其成为研究和应用视觉异常检测的理想工具。
automating-technical-analysis - 自动化技术分析与深度学习的金融交易系统
Github加密货币交易开源项目技术分析时间序列分析股票交易金融交易
automating-technical-analysis项目旨在通过数据分析和深度学习简化金融交易决策。它结合了多种流行的技术分析指标,如MACD、慢随机指标和RSI,并利用Transformer编码器神经网络学习价格模式和交易行为。这种创新方法提供实时的买入、卖出或持有建议,有助于优化交易策略。项目通过Streamlit平台提供易于使用的界面,使技术分析变得更加简单和易懂。作为开源项目,它适用于股票和加密货币市场,为交易者提供强大的自动化分析工具。
pyoats - 灵活强大的时间序列异常检测Python库
GithubOATS开源项目异常检测时间序列机器学习
pyoats是一个专注于时间序列异常检测的开源Python库。它整合了多种先进检测算法,支持单变量和多变量时间序列分析,并提供统一的输出接口。该项目不仅集成了PyTorch、TensorFlow等深度学习框架,还包含传统统计方法。pyoats旨在简化异常检测实验流程,为数据科学家和工程师提供了一个功能丰富、使用灵活的工具。
neural_prophet - 易用的开源时间序列预测框架
GithubNeuralProphetPyTorch开源项目时间序列预测模型构建
NeuralProphet是一个基于PyTorch的开源框架,将神经网络与传统时间序列算法结合,专为时间序列预测而设计。它提供简便的代码接口,支持模型定制、趋势检测、季节性分析和事件影响评估,适合高频次和长期数据。项目仍在beta阶段,欢迎社区贡献。
timeshap - 针对循环模型的时序数据解释框架
GithubShapley值TimeSHAP序列扰动开源项目模型解释递归模型
TimeSHAP是一个基于KernelSHAP的模型无关解释框架,专门用于分析时序数据和循环模型。它提供事件、特征和单元级别的归因计算,并通过Shapley值剪枝算法识别关键决策事件。TimeSHAP支持多种解释方法,包括局部和全局层面的分析,可应用于符合特定接口的各类机器学习模型,如PyTorch和TensorFlow实现的模型。
TimeMixer - 多尺度混合技术推动时间序列预测新突破
GithubICLRMLP架构TimeMixer多尺度混合开源项目时间序列预测
TimeMixer是一种基于MLP架构的时间序列预测模型,通过多尺度混合技术实现长短期预测的性能突破。该模型利用Past-Decomposable-Mixing和Future-Multipredictor-Mixing模块处理多尺度时间序列,在多个基准数据集上展现出优异性能。TimeMixer不仅预测精度高,还具备良好的运行效率,适用于多种要求高效预测的应用场景。
darts - Python中易于使用的时间序列预测与异常检测库
DartsGithub开源项目异常检测时间序列概率预测深度学习
Darts是一个用户友好且灵活的Python库,专注于时间序列的预测与异常检测。它提供了一系列从ARIMA到深度神经网络的多样化模型,通过统一的fit()和predict()接口简化操作,类似于scikit-learn。此外,Darts支持包括多变量和外部数据在内的复杂时间序列处理,并为大规模数据集提供高效解决方案。它还拥有全面的异常检测功能,允许进行深入的异常分析和评分。
tflearn - 深度学习库,简化TensorFlow高阶API的使用
GithubTFLearnTensorFlow开源项目深度学习神经网络高层API
TFLearn是一个模块化且透明的深度学习库,基于TensorFlow构建,提供高阶API以加速实验。特点包括易用的高阶API、快速原型设计、完全透明的TensorFlow集成、强大的训练辅助功能和精美的图形可视化。支持最新的深度学习模型,兼容TensorFlow v2.0及以上版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号