Project Icon

beit_base_patch16_224.in22k_ft_in22k_in1k

BEiT模型:基于ImageNet数据集的高效图像分类与特征提取

beit_base_patch16_224.in22k_ft_in22k_in1k是一个强大的图像分类模型,基于BEiT架构设计。该模型在ImageNet-22k数据集上进行自监督掩码图像建模预训练,并在ImageNet-22k和ImageNet-1k上微调,具有8650万个参数。它支持224x224像素的输入图像,可用于图像分类和特征提取,为计算机视觉任务提供高效解决方案。

Chinese-CLIP - 中文多模态嵌入和检索性能优化的领先方案
Chinese-CLIPGithub图文特征提取开源项目模型下载跨模态检索零样本图像分类
Chinese-CLIP项目,基于大规模中文图文对数据,专门针对中文领域的特点进行优化,提供高效的图文特征计算与相似度测算,实现零样本分类和跨模态检索。该项目改进了多个模型,包括ViT与ResNet结构,并在多个公开数据集上展示了显著的性能提升,为中文处理场景下的企业和研究者提供强大工具。
FeatUp - 提升任意模型特征空间分辨率的框架
FeatUpGithubICLR 2024分辨率提升开源项目模型无关框架特征上采样
FeatUp是一个模型无关的特征提升框架,可将任意模型的特征空间分辨率提高16-32倍,同时保持语义一致性。该框架支持DINO、CLIP和ResNet50等多种预训练模型,适用于图像分割、目标检测等视觉任务。FeatUp提供简洁的API接口和开源代码,为计算机视觉研究和应用开辟了新途径。
aimet - 深度学习模型优化的量化与压缩工具
AIMETGithubPyTorch开源项目模型压缩模型量化深度学习
AI Model Efficiency Toolkit (AIMET) 提供先进的模型量化和压缩技术,专注于优化已训练的神经网络模型。其主要功能包括跨层均衡、偏差校正、自适应舍入和量化感知训练,显著提升模型运行性能,降低计算和内存要求,并保持任务精度。AIMET 兼容 PyTorch、TensorFlow 和 ONNX 模型,通过 AIMET Model Zoo 提供优化的8位推理神经网络模型。同时,AIMET 支持空间SVD和通道剪枝等压缩技术,并提供可视化工具检查模型量化和压缩效果。
BitNet - 高效压缩大型语言模型的1比特变压器实现
1比特变换器BitNetGithubPyTorch实现大语言模型开源项目模型压缩
BitNet是一种创新的1比特变压器实现,通过BitLinear层替换标准线性投影,实现大型语言模型的高效压缩。该项目提供PyTorch实现,包含BitLinear、BitNetTransformer和BitAttention等核心组件,支持推理和Hugging Face模型集成。BitNet还探索了视觉任务应用,展现了多模态领域的潜力。项目包括训练脚本、性能基准测试和CUDA优化,为研究人员和开发者提供了全面的工具集。
GiT - 通用视觉Transformer模型实现多任务统一
GiTGithub多任务学习开源项目视觉Transformer计算机视觉语言接口
GiT是一种通用视觉Transformer模型,采用单一ViT架构处理多种视觉任务。该模型设计简洁,无需额外视觉编码器和适配器。通过统一语言接口,GiT实现了从目标检测到图像描述等多任务能力。在多任务训练中,GiT展现出任务间协同效应,性能超越单任务训练且无负迁移。GiT在零样本和少样本测试中表现优异,并随模型规模和数据量增加而持续提升性能。
Efficient-AI-Backbones - 领先的人工智能模型与技术 - Huawei Noah's Ark Lab 研发
AI模型GithubNeurIPSTransformer华为开源项目机器学习热门
Efficient-AI-Backbones 项目涵盖了由华为诺亚方舟实验室研发的一系列先进的人工智能模型,包括 GhostNet, TNT, AugViT, WaveMLP, 和 ViG 等。这些模型通过创新的结构设计和优化,有效提升了计算效率和性能,广泛应用于各种智能处理任务。最新发布的 ParameterNet 在 CVPR 2024 会议上被接受,展现了华为在人工智能技术领域的持续领先。
Keras-TextClassification - 多样预训练模型支持的高效文本分类工具
GithubKeras-TextClassification嵌入式模型开源项目文本分类深度学习神经网络
为中文用户提供高效的文本分类解决方案,支持FastText、BERT、Albert等多种预训练模型,涵盖词、字、句子嵌入。详细介绍数据处理与模型训练流程,通过下载与调用数据,实现多标签分类和文本相似度计算,简化复杂的自然语言处理任务。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
Awesome-Backbones - 图像分类的主干网络库及其使用教程
Awesome-BackbonesGithubPyTorch图像分类开源项目模型训练预训练权重
提供丰富的图像分类主干网络,包括TinyViT、DeiT3、EdgeNeXt、RevVisionTransformer等,兼容Pytorch 1.7.1+及Python 3.6+。项目包含环境搭建、数据集准备、训练和评估的详细教程,适合科研和实际应用,提升图像分类模型性能。提供快速开始指南和预训练权重,帮助开发者高效部署与测试。
DiT-MoE - 16亿参数规模的稀疏化扩散Transformer模型
DiT-MoEGithub图像生成开源项目扩散模型深度学习混合专家
DiT-MoE项目采用混合专家模型,将扩散Transformer扩展至16亿参数规模。作为扩散Transformer的稀疏版本,DiT-MoE在保持与密集网络相当性能的同时,实现了高效的推理。项目提供PyTorch实现、预训练权重和训练/采样代码,并包含专家路由分析和Hugging Face检查点。通过混合专家方法,DiT-MoE在模型扩展和推理优化方面展现出显著优势。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号