Project Icon

beit_base_patch16_384.in22k_ft_in22k_in1k

高效的BEiT自监督图像分类与嵌入模型

BEiT图像分类模型在ImageNet-22k上通过DALL-E dVAE自监督掩码图像建模进行训练,并在ImageNet-22k和ImageNet-1k上进行微调。特点包括易于实现图像分类和生成图像嵌入,具有86.7百万参数,支持384x384图像。模型适合通过timm库高效调用,适用于多种计算机视觉应用。

项目介绍:beit_base_patch16_384.in22k_ft_in22k_in1k

概述

beit_base_patch16_384.in22k_ft_in22k_in1k 是一个用于图像分类的模型。该模型采用了自监督的方式,即通过遮盖图像中的部分像素来训练模型,这一过程被称为自监督遮蔽图像建模(Masked Image Modelling, MIM)。在此过程中,利用了 DALL-E 的离散变分自编码器(dVAE)作为视觉词汇化工具。模型首先在大规模图像数据集 ImageNet-22k 上进行训练,然后在 ImageNet-22k 和 ImageNet-1k 上进行了微调。

模型详情

模型使用方法

图像分类

使用 timm 库可以加载和使用该图像分类模型。以下是一个简单的代码示例,用于对图像进行分类:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model('beit_base_patch16_384.in22k_ft_in22k_in1k', pretrained=True)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # unsqueeze single image into batch of 1

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

图像嵌入

以下代码展示了如何获取图像的特征向量:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'beit_base_patch16_384.in22k_ft_in22k_in1k',
    pretrained=True,
    num_classes=0,  # 移除分类器层
)
model = model.eval()

data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 输出为(batch_size, num_features)格式的张量

# 或者使用以下代码执行相同操作(无需设置 num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# 输出为未池化的(1, 577, 768)格式的张量

output = model.forward_head(output, pre_logits=True)
# 输出为(1, num_features)格式的张量

模型比较

可以通过 timm 模型结果 来比较该模型的数据集和运行时指标。

引用

如果在学术研究中使用了该模型,请引用以下论文:

@article{bao2021beit,
  title={Beit: Bert pre-training of image transformers},
  author={Bao, Hangbo and Dong, Li and Piao, Songhao and Wei, Furu},
  journal={arXiv preprint arXiv:2106.08254},
  year={2021}
}
@article{dosovitskiy2020vit,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={ICLR},
  year={2021}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号