Project Icon

beitv2_base_patch16_224.in1k_ft_in22k

BEiT-v2架构的ImageNet-22k微调图像分类与特征提取模型

beitv2_base_patch16_224.in1k_ft_in22k是基于BEiT-v2架构的图像分类模型,在ImageNet-1k上进行自监督预训练,并在ImageNet-22k上微调。该模型拥有1.026亿参数,支持224x224像素输入,适用于图像分类和特征提取。通过timm库可轻松加载,为计算机视觉研究和应用提供强大工具。

vit_base_patch16_224.mae - 采用MAE预训练的Vision Transformer图像特征模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.mae是一个基于Vision Transformer架构的图像特征模型,通过自监督掩码自编码器(MAE)方法在ImageNet-1k数据集上预训练。该模型适用于图像分类和特征提取,拥有8580万参数,处理224x224像素的输入图像。它提供简洁的API,便于获取分类结果和提取图像嵌入。这个模型融合了ViT的出色表征能力和MAE的自监督学习优势,为多种计算机视觉任务提供了有力的预训练基础。
vit_base_patch14_dinov2.lvd142m - Vision Transformer自监督图像特征提取模型
DINOv2GithubHuggingfaceVision Transformertimm图像特征提取开源项目模型自监督学习
vit_base_patch14_dinov2.lvd142m是基于Vision Transformer架构的图像特征提取模型,采用DINOv2自监督方法在LVD-142M数据集上预训练。模型包含8660万参数,支持518x518像素输入,可用于图像分类和特征提取。该模型无需监督即可学习视觉特征,性能出色。研究者可通过timm库便捷使用此预训练模型。
vit-large-patch16-384 - Vision Transformer大模型,提升高分辨率图像分类表现
GithubHuggingfaceImageNetVision Transformertransformer图像分类开源项目模型深度学习
项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。
vit_base_patch8_224.dino - 将自监督DINO方法应用于视觉变换器以增强图像特征提取能力
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
该项目利用Vision Transformer (ViT) 和自监督DINO方法进行图像特征提取,支持图像分类和嵌入应用。模型在ImageNet-1k数据集上进行了预训练,具有85.8M参数,能够处理224 x 224分辨率的图像。由于其参数利用效率高,该模型在大规模数据集上表现良好,适合精确特征提取的视觉任务,增强图像识别及分析能力。通过`timm`库可轻松实现模型调用和图像处理,满足多种计算机视觉应用需求。
xcit_large_24_p8_224.fb_in1k - XCiT大型模型提供强大的图像分类和特征提取能力
GithubHuggingfaceImageNetXCiT图像分类开源项目模型深度学习神经网络
xcit_large_24_p8_224.fb_in1k是一个基于XCiT架构的预训练模型,专注于图像分类和特征提取。该模型在ImageNet-1k数据集上训练,拥有1.889亿参数,处理224x224像素的图像。它在图像分类和特征嵌入任务中表现出色,适用于多种计算机视觉应用。借助timm库,研究人员和开发者可以方便地使用此模型进行推理或迁移学习。
swin_large_patch4_window7_224.ms_in22k_ft_in1k - 分层视觉Transformer模型 基于ImageNet-22k预训练和ImageNet-1k微调
GithubHuggingfaceImageNetSwin Transformertimm图像分类开源项目模型特征提取
swin_large_patch4_window7_224.ms_in22k_ft_in1k是基于Swin Transformer架构的图像分类模型。该模型在ImageNet-22k上预训练,ImageNet-1k上微调,拥有1.965亿参数,34.5 GMACs计算量。它支持224x224输入图像,适用于图像分类、特征提取和图像嵌入。模型采用分层结构和移位窗口机制,平衡了计算效率和性能。
vit-small-patch16-224 - Google开发的轻量级视觉Transformer模型用于高效图像分类
GithubHuggingfaceImageNetVision Transformerpytorch-image-modelssafetensors图像分类开源项目模型
vit-small-patch16-224是Google开发的轻量级视觉Transformer模型,针对高效图像分类任务进行了优化。该模型由社区成员从timm仓库转换并上传至Hugging Face平台。它与ViT-base模型具有相同的使用方式,特别适合计算资源有限的应用场景。模型在ImageNet数据集上经过训练,可用于各种计算机视觉任务,如图像识别和分类。相比ViT-base,它具有更小的模型尺寸和更快的推理速度,同时保持了良好的性能表现。需要注意的是,模型的safetensors版本要求torch 2.0或更高版本的运行环境。
vit-tiny-patch16-224 - 轻量级ViT模型实现高效图像分类
GithubHugging FaceHuggingfaceImageNetVision Transformer图像分类开源项目权重转换模型
vit-tiny-patch16-224是一个轻量级视觉transformer模型,专注于图像分类任务。这个模型采用16x16的patch大小和224x224的输入分辨率,在保持分类准确性的同时大幅降低了计算资源需求。其小型结构使其特别适合在资源受限环境中使用或需要快速推理的场景。值得注意的是,该模型是基于Google的ViT架构,由第三方研究者使用timm仓库的权重进行转换和发布。
vit_large_patch16_384.augreg_in21k_ft_in1k - 使用ImageNet数据集进行图像分类的Vision Transformer模型
GithubHuggingfaceVision Transformer图像分类开源项目模型模型比较特征提取预训练模型
该Vision Transformer模型专用于图像分类,最初在ImageNet-21k上进行扩展和正则化训练,并在ImageNet-1k上进行微调。由原作者使用JAX开发,后移植至PyTorch框架。模型的显著特点包括支持384x384图像尺寸,参数量达到304.7M,提升图像识别的准确性。该模型简化了图像分类和图像嵌入生成的过程。高效的数据增强和正则化策略进一步提升了模型性能,是计算机视觉研究与应用的有效工具。
convnextv2_base.fcmae_ft_in22k_in1k - 多功能图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt-V2是一款先进的图像分类模型,通过全卷积掩码自编码器框架(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。除图像分类外,该模型还可用于特征图提取和图像嵌入。拥有8870万参数,ConvNeXt-V2在ImageNet-1k验证集上实现86.74%的Top-1准确率。凭借在多项基准测试中的卓越表现,ConvNeXt-V2成为各类计算机视觉任务的优秀选择。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号