Project Icon

convnext_nano.in12k_ft_in1k

基于ConvNeXt架构的轻量级图像分类模型

convnext_nano.in12k_ft_in1k是基于ConvNeXt架构开发的轻量级图像分类模型,模型参数量1560万,在ImageNet-12k数据集预训练后在ImageNet-1k微调。支持图像分类、特征提取和嵌入向量生成等功能,适用于计算资源受限环境下的视觉任务。

convnext-xlarge-384-22k-1k - 融合现代设计的高性能图像分类卷积神经网络
ConvNeXTGithubHuggingface图像分类开源项目模型深度学习神经网络计算机视觉
ConvNeXT是一种创新的纯卷积神经网络模型,结合了ResNet的现代化设计和Swin Transformer的先进理念。该模型在ImageNet-22k数据集上进行了大规模预训练,并在ImageNet-1k上以384x384分辨率精细调优,展现出卓越的图像分类性能。ConvNeXT不仅适用于各类计算机视觉任务,还凸显了传统卷积网络在当代人工智能领域的持续价值和潜力。
xcit_nano_12_p8_224.fb_in1k - 基于跨协方差转换器的轻量级图像分类模型
GithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络计算机视觉
xcit_nano_12_p8_224.fb_in1k采用跨协方差图像转换器(XCiT)架构,是一个参数量为3.0M的轻量级图像分类模型。模型在ImageNet-1k数据集上完成预训练,支持224x224尺寸的图像输入,可应用于图像分类和特征提取。模型通过跨协方差注意力机制降低计算复杂度,适合实际部署应用。
convnextv2_large.fcmae_ft_in22k_in1k - ConvNeXt-V2图像分类模型结合FCMAE预训练架构
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型比较深度学习
ConvNeXt-V2是一个大型图像分类模型,通过FCMAE框架预训练并在ImageNet数据集上微调。模型包含1.98亿参数,Top1准确率达87.26%,可用于图像分类、特征提取和嵌入等计算机视觉任务。其224x224的标准训练分辨率和多功能性使其成为视觉处理的实用选择。
tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
convnext_xxlarge.clip_laion2b_soup_ft_in1k - 大规模预训练的高性能图像分类模型
ConvNeXtGithubHuggingfaceImageNet-1kLAIONtimm图像分类开源项目模型
ConvNeXt XXLarge是一款基于ConvNeXt架构的高性能图像分类模型。该模型在LAION-2B数据集上进行CLIP预训练,随后在ImageNet-1k上微调,拥有8.46亿参数。在256x256的图像输入下,Top-1准确率达到88.612%。除图像分类外,该模型还支持特征图提取和图像嵌入生成,可为多种计算机视觉任务提供强大支持。
inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
res2next50.in1k - 基于Res2Net架构的高效多尺度图像分类模型
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习特征提取
res2next50.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,参数量为2470万,计算复杂度为4.2 GMACs。它不仅可用于图像分类,还支持特征图提取和图像嵌入等任务。res2next50.in1k在性能和灵活性方面表现出色,适用于广泛的计算机视觉应用。研究人员可通过timm库便捷地使用和评估此模型。
convnext-large-384 - ConvNeXT模型在图像分类中的创新突破
ConvNeXTGithubHuggingfaceImageNetResNetVision Transformers图像分类开源项目模型
ConvNeXT是一个受Vision Transformers启发的卷积模型,通过在ImageNet-1k上以384x384分辨率训练而成,旨在提高图像分类效果。研究显示,该模型在性能上优于传统模型,并基于ResNet进行了现代化改造。开发者Liu等人在相关论文中介绍了这一模型,该模型可用于分类任务,亦可在Hugging Face平台上进行任务微调。
convnextv2-atto-1k-224 - ConvNeXt V2 提升卷积网络性能的先进图像分类模型
ConvNeXt V2FCMAE框架GithubHuggingfaceImageNet-1K卷积神经网络图像分类开源项目模型
ConvNeXt V2 是一种创新的图像分类模型,利用 FCMAE 框架在 ImageNet-1K 数据集上进行微调。该模型结合了全卷积掩码自编码器和新型 GRN 层,有效提升了在多项识别基准上的性能。模型能够进行图像分类,预测应用于 ImageNet 1,000 类问题,是计算机视觉任务的高效选择。
edgenext_small.usi_in1k - 轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用
EdgeNeXtGithubHuggingfaceImageNet图像分类开源项目模型特征提取神经网络
edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号