Project Icon

eca_halonext26ts.c1_in1k

基于ResNeXt架构的HaloNet图像分类模型

eca_halonext26ts.c1_in1k是一种基于ResNeXt架构的HaloNet图像分类模型,采用高效通道注意力机制。该模型在timm库中使用ImageNet-1k数据集训练,参数量为10.8M,GMACs为2.4,适用于256x256图像。它结合了ResNet Strikes Back的训练方法和局部自注意力机制,可用于图像分类、特征图提取和图像嵌入等任务。通过灵活的BYOB架构,该模型在保持计算效率的同时提供了良好的性能和可定制性。

convnext_small.fb_in22k_ft_in1k_384 - ConvNeXt模型提升图像分类精度的预训练与微调方案
ConvNeXtGithubHuggingfaceImageNet图像分类开源项目模型模型比较特征提取
ConvNeXt是一款用于图像分类的模型,于ImageNet-22k数据集预训练,并在ImageNet-1k上微调。该模型拥有50.2百万参数和25.6 GMACs,支持384x384尺寸的图像处理。除了图像分类外,它还支持特征图和图像嵌入提取。凭借其优异的性能和高效的图像处理能力,ConvNeXt被广泛应用于复杂的图像识别任务。通过timm库可实现模型便捷的加载与应用,适用于各种研究与工程需求。
convnext_small.fb_in22k - 支持多任务图像处理的预训练模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
ConvNeXt是一个经过ImageNet-22k预训练的图像分类模型,具备66.3M参数和8.7 GMACs。本文介绍其关键特性及在图像特征提取中的应用,旨在帮助专业用户理解和有效利用该模型进行视觉任务。
convnextv2_nano.fcmae_ft_in1k - 基于FCMAE的ConvNeXt-V2高效图像分类与特征提取模型
ConvNeXt V2GithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习特征提取
ConvNeXt-V2模型通过全卷积掩码自动编码器框架进行预训练,并在ImageNet-1k数据集上进行微调。该模型具备15.6百万参数,支持多种图像尺寸处理,训练尺寸为224x224,测试尺寸为288x288。借助timm库,它可执行图像分类、特征提取和图像嵌入,适用于多种应用场景。
convnextv2_base.fcmae_ft_in22k_in1k_384 - 高效图像识别与特征开发的开源解决方案
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2是一款基于全卷积掩码自编码器(FCMAE)预训练的图像分类模型,能够高效处理ImageNet-22k和ImageNet-1k数据集。模型拥有88.7M的参数和45.21 GMACs,适合精准的图像识别和特征开发。兼容timm库,支持图像分类、特征图提取和图像嵌入生成等应用场景。通过简单的Python代码即可调用该模型,提升开发效率。
tinynet_e.in1k - TinyNet模型在ImageNet-1k上的应用与性能分析
GithubHuggingfaceImageNet-1ktimmtinynet_e.in1k图像分类开源项目模型特征提取
TinyNet是一个旨在优化图像分类和特征提取的模型,通过调整分辨率、深度和宽度,在ImageNet-1k上进行训练。模型参数量为2.0M,并具有低计算负荷。提供简便的代码示例以支持图像分类、特征图提取和图像嵌入,可用于多种图像处理场景。同时,通过timm库探索其指标表现,更深入了解其在神经信息处理中的应用。
botnet26t_256.c1_in1k - BotNet:结合自注意力机制的ResNet变体图像分类模型
BotNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
botnet26t_256.c1_in1k是一个结合ResNet架构和自注意力机制的图像分类模型。该模型采用灵活的BYOBNet设计,支持自定义网络结构。在ImageNet-1k数据集上训练,拥有1250万参数,适用于图像分类、特征提取和嵌入生成。模型整合了ResNet的优势和注意力机制,在视觉识别任务中表现出色。
efficientnet_lite0.ra_in1k - 轻量级EfficientNet模型用于图像分类和特征提取
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_lite0.ra_in1k是一个在ImageNet-1k数据集上训练的轻量级图像分类模型。它使用RandAugment数据增强和RMSProp优化器,仅有4.7M参数和0.4 GMACs,适合资源受限环境。该模型支持图像分类、特征图提取和图像嵌入,通过timm库实现,提供简洁API接口,便于快速部署。
resnet101.a1h_in1k - ResNet-B架构图像分类模型 支持多样化特征提取
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习预训练模型
resnet101.a1h_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积和池化层、1x1卷积短路下采样等结构。支持图像分类、特征图提取和图像嵌入功能,参数量44.5M,224x224输入下GMAC为7.8。在ImageNet验证集上Top-1准确率82.8%,Top-5准确率96.32%。
xcit_large_24_p8_224.fb_in1k - XCiT大型模型提供强大的图像分类和特征提取能力
GithubHuggingfaceImageNetXCiT图像分类开源项目模型深度学习神经网络
xcit_large_24_p8_224.fb_in1k是一个基于XCiT架构的预训练模型,专注于图像分类和特征提取。该模型在ImageNet-1k数据集上训练,拥有1.889亿参数,处理224x224像素的图像。它在图像分类和特征嵌入任务中表现出色,适用于多种计算机视觉应用。借助timm库,研究人员和开发者可以方便地使用此模型进行推理或迁移学习。
resnet10t.c3_in1k - 使用ResNet-T技术的先进图像分类模型
GithubHuggingfaceImage EmbeddingsImageNetResNet-T图像分类开源项目提取特征图模型
ResNet-T模型结合ReLU激活和分层结构的3x3卷积和池化,实现高效的图像分类。模型在ImageNet-1k数据集上训练,通过SGD优化和Cosine学习率调度,具备出色的分类和特征提取能力,适用于多种应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号