Project Icon

edgenext_small.usi_in1k

轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用

edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。

tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
convnext_small.fb_in22k - 支持多任务图像处理的预训练模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
ConvNeXt是一个经过ImageNet-22k预训练的图像分类模型,具备66.3M参数和8.7 GMACs。本文介绍其关键特性及在图像特征提取中的应用,旨在帮助专业用户理解和有效利用该模型进行视觉任务。
convnextv2-tiny-1k-224 - 基于全新框架节点,优化卷积网络的性能
ConvNeXt V2FCMAEGithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型
ConvNeXt V2引入了全新的全卷积掩码自动编码器框架及全局响应归一化层,提升卷积网络在多种识别基准的表现,经过ImageNet-1K数据集微调,适合高精度图像分类任务及视觉识别应用。
convnext_atto.d2_in1k - 轻量级ConvNeXt模型,优化图像分类和特征提取
ConvNeXtGithubHuggingfaceImageNet-1kRoss Wightman图像分类开源项目模型特征提取
ConvNeXt图像分类模型,经过Ross Wightman在timm库中使用ImageNet-1k数据集训练。其参数为3.7M,计算量为0.6 GMACs,适合高效图像嵌入与特征提取,计算复杂度低但准确度高,适合多种图像分析任务。
convnext-xlarge-384-22k-1k - 融合现代设计的高性能图像分类卷积神经网络
ConvNeXTGithubHuggingface图像分类开源项目模型深度学习神经网络计算机视觉
ConvNeXT是一种创新的纯卷积神经网络模型,结合了ResNet的现代化设计和Swin Transformer的先进理念。该模型在ImageNet-22k数据集上进行了大规模预训练,并在ImageNet-1k上以384x384分辨率精细调优,展现出卓越的图像分类性能。ConvNeXT不仅适用于各类计算机视觉任务,还凸显了传统卷积网络在当代人工智能领域的持续价值和潜力。
convnextv2_tiny.fcmae_ft_in22k_in1k - ConvNeXt-V2图像分类模型 FCMAE预训练与ImageNet微调
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2架构的图像分类模型采用全卷积掩码自编码器(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。该模型拥有2860万参数,224x224输入尺寸下达到83.894%的top1准确率。适用于图像分类、特征提取和图像嵌入等计算机视觉任务,为高效图像处理提供了强大支持。
convnextv2_huge.fcmae_ft_in22k_in1k_512 - ConvNeXt-V2高效的图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型预训练特征提取
ConvNeXt-V2模型在全卷积掩码自动编码器框架下进行预训练,并在ImageNet-22k和ImageNet-1k数据集上微调,提升了图像分类和特征提取的效率。模型拥有660.3M参数,处理512x512图像,适合复杂计算需求。支持图像分类、特征图提取和图像嵌入,确保高准确率和多样化应用,结合timm库简化操作,适用于研究和工业应用。
convnextv2_base.fcmae_ft_in22k_in1k_384 - 高效图像识别与特征开发的开源解决方案
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2是一款基于全卷积掩码自编码器(FCMAE)预训练的图像分类模型,能够高效处理ImageNet-22k和ImageNet-1k数据集。模型拥有88.7M的参数和45.21 GMACs,适合精准的图像识别和特征开发。兼容timm库,支持图像分类、特征图提取和图像嵌入生成等应用场景。通过简单的Python代码即可调用该模型,提升开发效率。
convnextv2_nano.fcmae_ft_in1k - 基于FCMAE的ConvNeXt-V2高效图像分类与特征提取模型
ConvNeXt V2GithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习特征提取
ConvNeXt-V2模型通过全卷积掩码自动编码器框架进行预训练,并在ImageNet-1k数据集上进行微调。该模型具备15.6百万参数,支持多种图像尺寸处理,训练尺寸为224x224,测试尺寸为288x288。借助timm库,它可执行图像分类、特征提取和图像嵌入,适用于多种应用场景。
tf_efficientnet_lite0.in1k - 轻量级EfficientNet-Lite模型实现高效图像分类与特征提取
EfficientNet-LiteGithubHuggingfaceImageNet-1k图像分类开源项目模型模型对比特征提取
EfficientNet-Lite0是一款专为高效图像分类和特征提取设计的模型,经过ImageNet-1k训练。该模型已被迁移至PyTorch,并利用timm库进行图像嵌入和特征图提取。在4.7M参数和0.4 GMACs的架构下,实现了高效性能与计算资源节约,适合作为多种视觉任务的解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号