Project Icon

ese_vovnet19b_dw.ra_in1k

VoVNet-v2轻量级图像分类模型 兼顾性能与能效

ese_vovnet19b_dw.ra_in1k是基于VoVNet-v2架构的图像分类模型,在ImageNet-1k数据集上使用RandAugment技术预训练。该模型参数量为6.5M,计算量为1.3 GMACs,适用于多种图像分类任务。除了高效的分类功能,它还可作为特征提取骨干网络,支持特征图提取和图像嵌入。模型在保持高性能的同时,优化了能耗和GPU计算效率,是一个兼顾性能与效率的轻量级选择。

mnasnet_100.rmsp_in1k - MNasNet轻量级移动端图像分类模型
GithubHuggingfaceImageNet-1kMNasNettimm图像分类开源项目模型神经网络架构
mnasnet_100.rmsp_in1k是基于MNasNet架构的轻量级图像分类模型,针对移动设备优化设计。该模型在ImageNet-1k数据集上训练,通过timm库实现。它采用RMSProp优化器和指数衰减学习率,参数量为4.4M,GMACs为0.3,适用于224x224像素图像。模型支持图像分类、特征提取和嵌入等功能,为移动端AI应用提供高效解决方案。
efficientnet_b4.ra2_in1k - EfficientNet B4图像分类模型 ImageNet-1k数据集训练
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_b4.ra2_in1k是基于EfficientNet架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用RandAugment RA2增强方法,使用RMSProp优化器,具有1930万参数和3.1 GMACs计算量。支持320x320训练图像和384x384测试图像,可用于图像分类、特征提取和嵌入等任务,为计算机视觉领域提供高效解决方案。
repvgg_a2.rvgg_in1k - RepVGG架构的轻量级图像分类模型支持多种视觉应用
GithubHuggingfaceImageNetRepVGG卷积神经网络图像分类开源项目模型预训练模型
repvgg_a2.rvgg_in1k是基于RepVGG架构的图像分类模型,通过ImageNet-1k数据集训练。该模型利用timm库的BYOBNet实现,允许自定义网络结构。模型参数量为28.2M,GMACs为5.7,处理224x224像素的输入图像。除图像分类外,还支持特征图提取和图像嵌入,可应用于多种计算机视觉任务。
rexnet_100.nav_in1k - 轻量级ReXNet图像分类模型 为资源受限场景提供高效解决方案
GithubHuggingfaceImageNet-1kReXNet图像分类开源项目模型模型比较特征提取
rexnet_100.nav_in1k是一款基于ReXNet架构的轻量级图像分类模型,在ImageNet-1k数据集上进行了预训练。该模型仅有4.8M参数和0.4 GMACs,适合在计算资源有限的环境中部署。它支持图像分类、特征图提取和图像嵌入等功能,为开发者提供多样化的应用选择。在ImageNet-1k验证集上,该模型展现出77.832%的Top-1准确率和93.886%的Top-5准确率,在轻量级模型中表现优异。
mobilenetv3_small_100.lamb_in1k - MobileNetV3小型模型:轻量级移动设备图像分类方案
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNetV3小型模型是一款基于timm库在ImageNet-1k数据集上训练的轻量级图像分类模型。它采用LAMB优化器和EMA权重平均技术,具有2.5M参数和0.1 GMACs的低计算量。该模型支持224x224像素输入,可用于图像分类、特征提取和嵌入生成,适合在移动设备上部署高效的视觉识别应用。
resnet152d.ra2_in1k - ResNet152d.ra2_in1k模型在图像分类中的应用与特点
GithubHuggingfaceImageNet-1kRandAugmentResNet-Dtimm图像分类开源项目模型
ResNet152d.ra2_in1k是基于ResNet-D架构的图像分类模型,采用ReLU激活和三层3x3卷积stem结构。该模型在ImageNet-1k上训练,并使用RandAugment RA2策略、RMSProp优化器和EMA权重平均进行优化,支持动态学习率调度和特征映射提取,其性能在复杂图像处理任务中表现优秀。
resnet18.a1_in1k - ResNet18图像分类模型 适用于多种计算机视觉任务
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
resnet18.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。它采用ReLU激活函数、单层7x7卷积等特性,支持图像分类、特征提取和嵌入等任务。该模型有1170万参数,在224x224分辨率下计算量为1.8 GMACs,可用于多种计算机视觉应用。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
fbnetc_100.rmsp_in1k - FBNetC-100:轻量级移动设备图像分类模型
FBNetGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型神经网络架构搜索
fbnetc_100.rmsp_in1k是基于FBNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。该模型仅有5.6M参数和0.4 GMACs,适用于224x224图像输入,专为移动设备优化。通过timm库,可轻松实现图像分类、特征图提取和图像嵌入等功能。模型采用RMSProp优化器和指数衰减学习率,平衡了性能和效率。
resnet50d.ra2_in1k - 基于ResNet-D架构的高效图像分类与特征提取模型
GithubHuggingfaceResNettimm图像分类开源项目模型深度学习神经网络
ResNet-D是一款在ImageNet-1k数据集训练的图像分类模型,采用ReLU激活函数和三层卷积结构,包含2560万参数。模型支持224x224尺寸训练输入和288x288测试输入,集成RandAugment增强技术,可实现图像分类、特征提取等计算机视觉任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号