Project Icon

ese_vovnet19b_dw.ra_in1k

VoVNet-v2轻量级图像分类模型 兼顾性能与能效

ese_vovnet19b_dw.ra_in1k是基于VoVNet-v2架构的图像分类模型,在ImageNet-1k数据集上使用RandAugment技术预训练。该模型参数量为6.5M,计算量为1.3 GMACs,适用于多种图像分类任务。除了高效的分类功能,它还可作为特征提取骨干网络,支持特征图提取和图像嵌入。模型在保持高性能的同时,优化了能耗和GPU计算效率,是一个兼顾性能与效率的轻量级选择。

vgg19.tv_in1k - VGG19深度卷积网络在ImageNet数据集上的图像分类与特征提取
GithubHuggingfaceImageNet-1kVGG图像分类开源项目模型深度卷积网络特征提取
针对图像识别任务,VGG19模型在ImageNet-1k数据集上采用原始的torchvision权重训练,支持224x224像素的输入图像。其140M+参数配置使得模型能够处理复杂的图像特征,包括分类、特征提取和嵌入应用,只需适用模型提供的转换配置即可实现高效部署。
inception_v3.tv_in1k - Inception-v3图像分类与特征提取深度学习模型
GithubHuggingfaceImageNetInception-v3timm图像分类开源项目模型特征提取
inception_v3.tv_in1k是基于Inception-v3架构的图像分类模型,通过ImageNet-1k数据集训练。该模型可用于图像分类和特征提取,参数量为23.8M,GMACs为5.7,适用于299x299分辨率图像。通过timm库,研究者可便捷加载预训练模型,执行图像分类、特征图提取和图像嵌入等任务,为计算机视觉研究提供有力工具。
mobilenet_v2_1.0_224 - 轻量级移动设备图像分类神经网络MobileNet V2
GithubHuggingfaceImageNetMobileNet V2图像分类开源项目模型神经网络计算机视觉
MobileNet V2是一款针对移动设备优化的图像分类神经网络模型,在ImageNet-1k数据集上进行预训练。该模型以低延迟和低功耗著称,适用于资源受限的环境。MobileNet V2支持多种分辨率和深度配置,在模型大小、推理速度和准确性之间实现了良好平衡。除图像分类外,它还可应用于目标检测、特征嵌入和图像分割等计算机视觉任务,为移动端应用提供了versatile的解决方案。
resnet50.a1_in1k - 基于ResNet-B架构的多功能图像分类模型
GithubHuggingfaceresnet50人工智能图像分类开源项目模型深度学习特征提取
resnet50.a1_in1k是基于ResNet-B架构的图像分类模型,在ImageNet-1k数据集上训练。模型采用ReLU激活函数、7x7卷积层和1x1卷积shortcut,使用LAMB优化器和BCE损失函数。它拥有2560万参数,可用于图像分类、特征提取和图像嵌入等任务。模型支持灵活的输入尺寸,在ImageNet验证集上实现了82.03%的Top-1准确率。
gmlp_s16_224.ra3_in1k - gMLP架构的ImageNet-1k图像分类模型
GithubHuggingfaceImageNetgMLPtimm图像分类开源项目模型深度学习模型
gmlp_s16_224.ra3_in1k是一个基于gMLP架构的图像分类模型,在ImageNet-1k数据集上训练。该模型在timm库中实现,参数量为1940万,计算量为4.4 GMACs,适用于224x224像素的图像输入。模型可用于图像分类和特征提取,支持top-5预测和图像嵌入生成。这一模型源自'Pay Attention to MLPs'研究,为计算机视觉领域提供了一种高效的MLP架构方案。
regnetz_c16.ra3_in1k - 采用灵活配置的RegNetZ模型实现高效图像分类
BYOBNetGithubHuggingfaceImageNet-1kRegNetZtimm图像分类开源项目模型
RegNetZ模型在ImageNet-1k上训练后,展现出色的图像分类性能。该模型基于timm库实现,通过BYOBNet灵活配置支持,包括block/stage布局、激活层、归一化层及自注意层等自定义选项。提供多种应用,如图像分类、特征提取及嵌入生成,设计适合处理不同组宽及层配置需求,尤其适用于高精度及灵活性任务。
tf_efficientnet_b0.ns_jft_in1k - EfficientNet变体用于图像分类与特征提取
EfficientNetGithubHuggingface图像分类开源项目模型特征提取神经网络迁移学习
tf_efficientnet_b0.ns_jft_in1k模型基于EfficientNet架构,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上训练。拥有520万参数,0.4 GMAC,支持224x224图像输入。这一轻量级模型适用于图像分类、特征提取和嵌入生成,为计算机视觉应用提供高效且多功能的解决方案。
convnext_nano.in12k_ft_in1k - 基于ConvNeXt架构的轻量级图像分类模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
convnext_nano.in12k_ft_in1k是基于ConvNeXt架构开发的轻量级图像分类模型,模型参数量1560万,在ImageNet-12k数据集预训练后在ImageNet-1k微调。支持图像分类、特征提取和嵌入向量生成等功能,适用于计算资源受限环境下的视觉任务。
inception_next_tiny.sail_in1k - InceptionNeXt架构的轻量级图像分类模型
GithubHuggingfaceImageNet-1kInceptionNeXttimm图像分类开源项目模型特征提取
inception_next_tiny.sail_in1k是基于InceptionNeXt架构的图像分类模型,在ImageNet-1k数据集上训练。该模型结合Inception和ConvNeXt的特点,提供图像分类、特征图提取和图像嵌入功能。模型参数为28.1M,GMACs为4.2,适用于224x224大小的图像输入。它通过timm库提供简洁的API,支持预训练权重,可轻松应用于多种计算机视觉任务。
mobilevitv2_075.cvnets_in1k - MobileViT-v2:高效的移动视觉变换器图像分类解决方案
GithubHuggingfaceImageNet-1kMobileViT-v2Separable Self-attention图像分类开源项目模型特征提取
MobileViT-v2是一个高效的移动视觉变换器模型,利用分离自注意力机制优化了图像分类与特征提取。经过ImageNet-1k数据集训练,该模型适配多种计算机视觉任务。模型规格包括2.9M参数和1.1 GMAC,支持256x256图像输入。借助timm库,模型可轻松集成至移动设备的视觉处理应用中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号