Project Icon

inception_next_tiny.sail_in1k

InceptionNeXt架构的轻量级图像分类模型

inception_next_tiny.sail_in1k是基于InceptionNeXt架构的图像分类模型,在ImageNet-1k数据集上训练。该模型结合Inception和ConvNeXt的特点,提供图像分类、特征图提取和图像嵌入功能。模型参数为28.1M,GMACs为4.2,适用于224x224大小的图像输入。它通过timm库提供简洁的API,支持预训练权重,可轻松应用于多种计算机视觉任务。

ml-fastvit - 高效混合视觉Transformer模型用于图像分类
FastViTGithub图像分类开源项目模型性能结构重参数化视觉Transformer
FastViT是一种采用结构重参数化技术的混合视觉Transformer模型。该模型在ImageNet-1K数据集上实现了准确率和延迟的良好平衡,提供多个变体以适应不同应用场景。FastViT在iPhone 12 Pro上的基准测试显示出优秀的移动端性能。项目开源了预训练模型、训练评估代码和使用文档。
MobileSAM - 高效轻量化图像分割模型,适用于移动设备
AI模型GithubMobileSAM图像分割开源项目深度学习计算机视觉
MobileSAM是一种轻量级图像分割模型,专为移动应用优化。它保持了与原始SAM相当的性能,同时大幅减少了模型参数和推理时间。通过将ViT-H编码器替换为TinyViT,MobileSAM将参数量从615M降至9.66M,推理速度从456ms提升至12ms。该项目提供完整的训练和使用文档,支持ONNX导出,可轻松集成到现有SAM项目中。
tiny-tensorrt - 简洁易用的nvidia TensorRT封装库,支持通过C++和Python API快速部署Onnx模型
CUDACUDNNGithubTensorRTonnx modeltiny-tensorrt开源项目
tiny-tensorrt是一个简洁易用的nvidia TensorRT封装库,支持通过C++和Python API快速部署Onnx模型。依赖CUDA、CUDNN和TensorRT,兼容多个版本。项目已停止维护,建议使用TensorRT的Python API或trtexec/polygraphy工具。更多信息请参考项目Wiki。
smol-vision - 前沿视觉模型优化与定制的实用技巧集锦
GithubONNX量化Smol Vision开源项目模型微调知识蒸馏视觉模型优化
smol-vision项目汇集了多种视觉模型优化技术,包括量化、ONNX转换、模型微调和知识蒸馏。项目提供了实用示例,展示如何使用Optimum优化目标检测模型、微调PaliGemma和Florence-2视觉语言模型,以及通过torch.compile加速基础模型。这些方法旨在帮助开发者提高模型性能、缩小规模和加快推理速度,使模型更好地适应各种硬件环境。
tensorflow-image-models - 将PyTorch图像模型移植到TensorFlow的预训练模型库
GithubTensorFlow图像模型开源项目机器学习深度学习预训练权重
tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。
imageinwords - 致力于生成超详细图像描述的研究项目
GithubImageInWords图像描述开源项目数据集机器学习计算机视觉
ImageInWords 是一个致力于生成超详细图像描述的研究项目。该项目提供基准评估数据集,可通过 Hugging Face 访问。它集成了计算机视觉和自然语言处理技术,为研究人员和开发者提供数据集、可视化工具和探索接口。这项研究旨在推进图像理解和描述生成领域的发展。
InSPyReNet - 优化显著目标检测的高分辨率图像金字塔网络
GithubInSPyReNetPyTorch图像金字塔开源项目显著性目标检测高分辨率图像
本项目介绍了一种基于图像金字塔的显著目标检测框架,称为逆显著性金字塔重构网络(InSPyReNet)。该方法无需高分辨率数据集即可进行高分辨率预测,并通过多尺度的图像融合解决感受野差异问题。实验结果表明,InSPyReNet在多项显著目标检测指标和边界精度上优于现有方法。项目提供了PyTorch实现,支持多GPU训练,且在HuggingFace等平台上提供了Web演示和命令行工具。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
OnnxStream - 适用于低资源设备的模型运行的内存优化的推理库
GithubMistral 7BOnnxStreamStable Diffusion XLTinyLlama开源项目性能
OnnxStream专为优化内存使用而设计,支持在低资源设备上高效运行大型模型如Stable Diffusion和TinyLlama。在仅有512MB RAM的Raspberry Pi Zero 2上,实现图像生成和语言模型推理,而无需额外交换空间或磁盘写入。通过解耦推理引擎与模型权重组件,OnnxStream显著降低内存消耗,提供轻量且高效的推理解决方案。其静态量化和注意力切片技术增强了多种应用中的适应性和性能。
quickai - 简化复杂机器学习模型的实验过程
GithubPythonQuickAIYOLO卷积神经网络开源项目机器学习
QuickAI 是一个 Python 库,简化了前沿机器学习模型的实验流程。支持 EfficientNet、VGG、ResNet 等图像分类模型和 GPT-NEO、Distill BERT 等自然语言处理模型。只需1-2行代码即可完成模型训练和评估,兼容 TensorFlow 和 PyTorch,并提供 Docker 容器便于环境配置。适用于各水平用户,助力快速推进机器学习项目。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号