Project Icon

inception_v4.tf_in1k

面向图像分类的Inception-v4预训练模型

Inception-v4是一个在ImageNet-1k数据集上预训练的深度学习模型,参数量为4270万,支持299x299图像输入。通过timm库可实现图像分类、特征图提取和图像嵌入等核心功能。该模型从TensorFlow移植至PyTorch,适用于计算机视觉领域的各类图像处理任务。

pit_b_224.in1k - 基于池化的视觉Transformer图像分类模型PiT
GithubHuggingfaceImageNet-1kPiTtimm图像分类开源项目模型特征提取
pit_b_224.in1k是一个基于池化的视觉Transformer(PiT)图像分类模型,在ImageNet-1k数据集上训练。该模型拥有7380万个参数,计算量为12.4 GMACs,支持224x224像素的输入图像。它可用于图像分类、特征图提取和图像嵌入等任务,在保持高精度的同时提高了计算效率。研究人员和开发者可通过timm库轻松加载并使用这个预训练模型。
twins_pcpvt_base.in1k - Twins-PCPVT基础模型在ImageNet-1k上的图像分类应用
GithubHuggingfaceImageNetTwins-PCPVTtimm图像分类开源项目模型深度学习模型
twins_pcpvt_base.in1k是基于Twins-PCPVT架构的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有4380万参数,采用创新的空间注意力机制,适用于图像分类和特征提取任务。模型可通过timm库加载,支持直接推理或进一步微调。其在224x224图像输入下的计算量为6.7 GMACs,激活量为2520万。
convnext_small.fb_in22k - 支持多任务图像处理的预训练模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
ConvNeXt是一个经过ImageNet-22k预训练的图像分类模型,具备66.3M参数和8.7 GMACs。本文介绍其关键特性及在图像特征提取中的应用,旨在帮助专业用户理解和有效利用该模型进行视觉任务。
pnasnet5large.tf_in1k - PNASNet大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kPNasNet图像分类开源项目模型深度学习特征提取
pnasnet5large.tf_in1k是基于Progressive Neural Architecture Search技术开发的图像分类模型,在ImageNet-1k数据集上训练而成。该模型拥有8610万参数,计算量为25.0 GMACs,支持331x331像素的图像输入。它不仅可用于图像分类,还能进行特征图提取和图像嵌入。研究人员和开发者可通过timm库轻松调用此预训练模型,提高图像处理效率。
resnet101.tv_in1k - 采用ResNet101架构的高效图像分类和特征提取模型
GithubHuggingfaceImageNetresnet101.tv_in1k图像分类开源项目模型深度学习特征提取
resnet101.tv_in1k是一个基于ResNet101架构的图像分类模型,搭载ReLU激活、单层7x7卷积池化和1x1卷积下采样等特性,经过ImageNet-1k数据集训练,可用于图像特征提取和分类。在深度残差学习的加持下,该模型在特征提取和分类任务中表现突出,适合用于学术研究和商用产品开发。
maxvit_base_tf_512.in21k_ft_in1k - MaxViT图像分类模型支持多尺寸特征提取和深度学习训练
GithubHuggingfaceImageNetMaxViT人工智能图像分类开源项目模型深度学习
MaxViT是谷歌研究团队开发的图像分类模型,通过ImageNet-21k预训练和ImageNet-1k微调实现。模型集成多轴注意力机制,总参数量119.9M,支持512x512分辨率输入。除图像分类外,还可输出多尺度特征图和嵌入向量,便于迁移至其他视觉任务。模型在ImageNet-1k测试中取得88.20%的分类准确率。
convnextv2_huge.fcmae_ft_in22k_in1k_384 - 高级卷积网络用于图像分类与特征提取
ConvNeXt-V2GithubHuggingfaceImageNet-1k图像分类开源项目模型特征骨干预训练模型
ConvNeXt-V2是一种先进的卷积网络模型,专为图像分类与特征提取而设计。此模型通过全卷积掩码自编码器进行预训练,并在ImageNet-22k和ImageNet-1k上进行微调。具备660.3M参数和338.0 GMACs的计算成本,专为384x384大小的图像设计,确保高效处理与高精度结果。其在主流图像分类任务中的表现卓越,达到88.668的Top-1准确率和98.738的Top-5准确率,其框架优化适配多种计算场景。
dpn98.mx_in1k - 基于DPN架构的ImageNet图像分类深度学习模型
DPNGithubHuggingfaceImageNet图像分类开源项目机器学习模型深度学习
DPN98是一个在ImageNet-1k数据集上训练的图像分类模型,采用双路径网络架构,具有6160万参数规模。该模型支持224x224像素输入,可用于图像分类、特征提取和图像嵌入。模型已从MXNet迁移至PyTorch框架,并提供预训练权重,适合进行计算机视觉研究和应用开发。
convit_small.fb_in1k - ConViT结合软卷积特性的图像分类框架
ConViTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络
ConViT是一个在ImageNet-1k数据集上训练的图像分类模型,结合了CNN和Transformer优势。模型参数量2780万,支持224x224图像输入,可用于分类和特征提取任务。模型提供预训练权重,适用于多种计算机视觉应用场景。
dpn107.mx_in1k - Dual-Path Networks图像分类模型:ImageNet-1k数据集的高性能解决方案
DPNGithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
dpn107.mx_in1k是一款基于Dual-Path Networks架构的图像分类模型,针对ImageNet-1k数据集优化。该模型拥有8690万参数和18.4 GMACs计算量,支持224x224像素的图像输入。最初由论文作者在MXNet框架上训练,后经Ross Wightman移植至PyTorch。除图像分类外,还可用于特征图提取和图像嵌入,为各种计算机视觉应用提供有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号