Project Icon

mobilenetv3_small_050.lamb_in1k

探索资源有效利用的MobileNet-v3图像分类模型

该项目展示了在ImageNet-1k上训练的MobileNet-v3图像分类模型,强调其在资源受限环境中的适用性。使用LAMB优化器和EMA权重平均化,该模型参照ResNet Strikes Back设计,通过简化预处理流程,支持图像分类、特征提取和图像嵌入等多种深度学习任务,增强模型性能。

spnasnet_100.rmsp_in1k - 使用Single-Path NAS技术设计的轻量级图像分类模型
GithubHuggingfaceImageNetSPNasNettimm图像分类开源项目模型神经网络架构搜索
spnasnet_100.rmsp_in1k是基于Single-Path NAS技术的轻量级图像分类模型,在ImageNet-1k数据集上训练。模型仅有440万参数和0.3 GMACs,适合资源受限场景。支持图像分类、特征图提取和图像嵌入等应用。通过timm库可轻松加载此预训练模型进行推理或微调。模型采用RMSProp优化器和指数衰减学习率调度,在保持高效性的同时确保了分类性能。
inception_next_tiny.sail_in1k - InceptionNeXt架构的轻量级图像分类模型
GithubHuggingfaceImageNet-1kInceptionNeXttimm图像分类开源项目模型特征提取
inception_next_tiny.sail_in1k是基于InceptionNeXt架构的图像分类模型,在ImageNet-1k数据集上训练。该模型结合Inception和ConvNeXt的特点,提供图像分类、特征图提取和图像嵌入功能。模型参数为28.1M,GMACs为4.2,适用于224x224大小的图像输入。它通过timm库提供简洁的API,支持预训练权重,可轻松应用于多种计算机视觉任务。
inception_v3.tv_in1k - Inception-v3图像分类与特征提取深度学习模型
GithubHuggingfaceImageNetInception-v3timm图像分类开源项目模型特征提取
inception_v3.tv_in1k是基于Inception-v3架构的图像分类模型,通过ImageNet-1k数据集训练。该模型可用于图像分类和特征提取,参数量为23.8M,GMACs为5.7,适用于299x299分辨率图像。通过timm库,研究者可便捷加载预训练模型,执行图像分类、特征图提取和图像嵌入等任务,为计算机视觉研究提供有力工具。
nfnet_l0.ra2_in1k - 轻量级NFNet模型:无需规范化层的高效图像识别
GithubHuggingfaceImageNet-1kNFNettimm图像分类开源项目模型特征提取
nfnet_l0.ra2_in1k是一种创新的轻量级NFNet图像分类模型,摒弃了传统的规范化层。它通过Scaled Weight Standardization和策略性放置的标量增益,实现了高效的大规模图像识别。基于ImageNet-1k数据集训练,该模型拥有3510万参数,适用于图像分类、特征提取和嵌入任务。这种无需常规规范化层的设计,为高性能图像处理提供了新的可能。
convnextv2_tiny.fcmae_ft_in1k - ConvNeXt-V2轻量级图像分类和特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型预训练模型
convnextv2_tiny.fcmae_ft_in1k是基于ConvNeXt-V2架构的轻量级图像分类模型。该模型通过全卷积masked自编码器预训练,在ImageNet-1k数据集微调,拥有2860万参数。它可用于图像分类、特征图提取和图像嵌入,在ImageNet验证集上Top-1准确率达82.92%。这是一个在性能和效率间取得平衡的优秀选择。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
efficientnet_b1.ra4_e3600_r240_in1k - EfficientNet B1轻量级图像分类模型
EfficientNetGithubHuggingfaceImageNet-1kpytorch-image-models图像分类开源项目模型预训练模型
efficientnet_b1.ra4_e3600_r240_in1k是基于EfficientNet架构的轻量级图像分类模型。该模型在ImageNet-1k数据集上训练,参数量为7.79M,在240x240输入尺寸下达到81.440%的Top-1准确率。它在模型大小和性能之间取得平衡,适用于计算资源有限的应用场景,也可作为特征提取器用于其他计算机视觉任务。
efficientnet_b5.sw_in12k_ft_in1k - EfficientNet-加强版:适用于图像分类与特征提取的高效模型
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNet模型结合了Swin Transformer的优化策略,经过ImageNet-12k预训练及ImageNet-1k微调,适用于图像识别、特征提取和嵌入生成。该模型使用AdamW优化器、梯度裁剪和余弦退火学习率等技术,提供高效的图像分类解决方案。
mobilevitv2-1.0-imagenet1k-256 - MobileViTv2中的可分离自注意力实现高效图像分类
GithubHuggingfaceImageNetMobileViTv2PyTorch分离自注意力图像分类开源项目模型
MobileViTv2是一个图像分类模型,通过引入可分离自注意力机制,提升计算效率与性能。该模型在ImageNet-1k数据集上预训练,适用于大规模图像分类任务,并支持PyTorch平台。用户可使用此模型进行未处理图像的分类,或寻找适合特定任务的微调版本,为图像识别应用带来优化。
tf_efficientnet_l2.ns_jft_in1k - EfficientNet架构的大规模图像识别与特征提取模型
EfficientNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络
基于EfficientNet架构开发的图像分类模型,采用Noisy Student半监督学习方法,结合ImageNet-1k和JFT-300m数据集进行训练。模型支持800x800分辨率输入,包含4.8亿参数,可用于图像分类、特征提取和嵌入向量生成。借助timm库实现模型的快速部署,适用于各类图像识别任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号