Project Icon

mobilenetv4_conv_aa_large.e230_r448_in12k_ft_in1k

高效图像分类与特征提取模型 支持移动设备应用

MobileNet-V4图像分类模型经过ImageNet-12k预训练和ImageNet-1k精细调整,优化了参数和图像处理能力。该模型适用于移动设备,并支持特征提取和图像嵌入。凭借出色的Top-1准确率和参数效率,它在同类模型中表现突出,提供快速准确的图像识别能力。

mobilenetv4_conv_medium.e500_r256_in1k - MobileNet-V4中档卷积模型:在保持较低参数量的同时提高图像分类效率
GithubHuggingfaceImageNet-1kMobileNet-V4timm图像分类开源项目模型特征提取
介绍了在ImageNet-1k数据集上训练的MobileNet-V4图像分类模型,其在维持高效分类精度的同时,降低了参数和计算量。模型支持特征提取和图像嵌入等应用场景,并与同类模型进行了广泛比较,适用于移动设备上的高效图像处理。
mobilenetv4_conv_small.e2400_r224_in1k - MobileNet-V4图像分类模型简介
GithubHuggingfaceImageNetMobileNetV4PyTorchtimm图像分类开源项目模型
MobileNetV4是一个利用ImageNet-1k数据集训练的图像分类模型,具有3.8M参数和0.2 GMACs的复杂度。该模型由timm库优化,使用了与MobileNet-V4论文一致的超参数。其训练和测试图像尺寸分别为224x224和256x256,适用于移动平台。更多信息可在PyTorch Image Models和相关论文中找到。
mobilenetv2_100.ra_in1k - 轻量级CNN模型实现图像分类与特征提取
GithubHuggingfaceImageNet-1kMobileNetV2timm图像分类开源项目模型特征提取
MobileNetV2是为移动和嵌入式视觉应用设计的轻量级卷积神经网络。该模型在ImageNet-1k数据集上训练,采用RandAugment数据增强和EMA权重平均技术。MobileNetV2在低计算复杂度下实现了高效的图像分类和特征提取。通过timm库,开发者可以便捷地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。
mobilenetv3_large_100.miil_in21k_ft_in1k - MobileNet-v3图像分类模型结合大规模和标准数据集优势
GithubHuggingfaceImageNetMobileNet-v3timm图像分类开源项目模型特征提取
MobileNet-v3是一款轻量级图像分类模型,由阿里巴巴MIIL团队在ImageNet-21k-P上预训练并在ImageNet-1k上微调。模型参数仅5.5M,适合资源受限设备。除图像分类外,还可用于特征图提取和图像嵌入,为视觉任务提供基础。该模型结合了大规模和标准数据集的优势,在保持高效性的同时提升了性能。
mobilenetv3_large_100.ra_in1k - MobileNet-v3 轻量级高效图像分类模型
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNet-v3是一款针对移动设备优化的图像分类模型。它在ImageNet-1k数据集上训练,采用RandAugment增强技术和RMSProp优化器。模型参数仅5.5M,计算量0.2 GMACs,支持224x224像素输入。除图像分类外,还可用于特征提取和生成图像嵌入,是资源受限环境下的理想选择。
mobilenet_v2_1.0_224 - 轻量级移动设备图像分类神经网络MobileNet V2
GithubHuggingfaceImageNetMobileNet V2图像分类开源项目模型神经网络计算机视觉
MobileNet V2是一款针对移动设备优化的图像分类神经网络模型,在ImageNet-1k数据集上进行预训练。该模型以低延迟和低功耗著称,适用于资源受限的环境。MobileNet V2支持多种分辨率和深度配置,在模型大小、推理速度和准确性之间实现了良好平衡。除图像分类外,它还可应用于目标检测、特征嵌入和图像分割等计算机视觉任务,为移动端应用提供了versatile的解决方案。
mobilenetv3_small_100.lamb_in1k - MobileNetV3小型模型:轻量级移动设备图像分类方案
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNetV3小型模型是一款基于timm库在ImageNet-1k数据集上训练的轻量级图像分类模型。它采用LAMB优化器和EMA权重平均技术,具有2.5M参数和0.1 GMACs的低计算量。该模型支持224x224像素输入,可用于图像分类、特征提取和嵌入生成,适合在移动设备上部署高效的视觉识别应用。
tf_mobilenetv3_small_minimal_100.in1k - MobileNetV3小型化模型:高效移动端图像分类
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
tf_mobilenetv3_small_minimal_100.in1k是一款针对移动设备优化的轻量级图像分类模型。基于MobileNet-v3架构,该模型在ImageNet-1k数据集上训练,仅有200万参数和0.1 GMACs,适用于224x224像素的图像输入。除图像分类外,它还可作为特征提取器用于其他计算机视觉任务。通过timm库,开发者可以方便地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。这个模型平衡了性能和效率,特别适合资源受限的移动应用场景。
mobilenet_v1_0.75_192 - 移动设备优化的轻量级卷积神经网络
GithubHuggingfaceMobileNet V1图像分类开源项目模型深度学习神经网络计算机视觉
MobileNet V1是一款为移动设备优化的轻量级卷积神经网络,在ImageNet-1k数据集上以192x192分辨率预训练。该模型在延迟、大小和准确性间实现平衡,适用于图像分类、物体检测等多种视觉任务。通过Hugging Face框架,用户可轻松使用此支持PyTorch的模型进行1000类ImageNet图像分类。MobileNet V1以其高效性能,为移动设备上的计算机视觉应用提供了实用解决方案。
tf_mobilenetv3_large_075.in1k - MobileNet-v3大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kMobileNetV3图像分类开源项目模型深度学习特征图提取
该模型为MobileNet-v3图像分类模型,基于ImageNet-1k数据集在Tensorflow上训练,并由Ross Wightman移植至PyTorch实现。使用224x224图像,拥有4.0百万参数和0.2 GMACs的效率。提供代码示例,帮助实现图像分类、特征提取和图像嵌入。更详细的比较信息可于timm项目页面查阅。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号