Project Icon

nest_base_jx.goog_in1k

NesT模型:高精度图像分类的嵌套层次Transformer架构

NesT (Nested Hierarchical Transformer) 是一种创新的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有6770万参数,支持图像分类、特征提取和图像嵌入等多种应用。NesT模型在JAX中原始训练,后被移植到PyTorch,展现出优秀的准确性、数据效率和可解释性,为计算机视觉领域提供了新的研究方向。

pnasnet5large.tf_in1k - PNASNet大规模图像分类与特征提取模型
GithubHuggingfaceImageNet-1kPNasNet图像分类开源项目模型深度学习特征提取
pnasnet5large.tf_in1k是基于Progressive Neural Architecture Search技术开发的图像分类模型,在ImageNet-1k数据集上训练而成。该模型拥有8610万参数,计算量为25.0 GMACs,支持331x331像素的图像输入。它不仅可用于图像分类,还能进行特征图提取和图像嵌入。研究人员和开发者可通过timm库轻松调用此预训练模型,提高图像处理效率。
convnext_nano.in12k_ft_in1k - 基于ConvNeXt架构的轻量级图像分类模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
convnext_nano.in12k_ft_in1k是基于ConvNeXt架构开发的轻量级图像分类模型,模型参数量1560万,在ImageNet-12k数据集预训练后在ImageNet-1k微调。支持图像分类、特征提取和嵌入向量生成等功能,适用于计算资源受限环境下的视觉任务。
tf_efficientnet_b7.ns_jft_in1k - EfficientNet B7图像分类模型 基于Noisy Student半监督学习
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型模型卡
模型采用EfficientNet B7架构,结合Noisy Student半监督学习,在ImageNet-1k和JFT-300m数据集上训练。参数量66.3M,输入图像尺寸600x600,支持图像分类、特征提取和嵌入向量生成。已从TensorFlow移植至PyTorch,可应用于高精度图像识别任务。
tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
convnextv2_tiny.fcmae_ft_in22k_in1k - ConvNeXt-V2图像分类模型 FCMAE预训练与ImageNet微调
ConvNeXt-V2GithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型特征提取
ConvNeXt-V2架构的图像分类模型采用全卷积掩码自编码器(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。该模型拥有2860万参数,224x224输入尺寸下达到83.894%的top1准确率。适用于图像分类、特征提取和图像嵌入等计算机视觉任务,为高效图像处理提供了强大支持。
convnext_tiny.in12k_ft_in1k - ConvNeXt微型模型基于ImageNet-12k预训练和ImageNet-1k微调
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt微型图像分类模型在ImageNet-12k数据集上预训练,并在ImageNet-1k上微调。模型采用最新ConvNeXt架构,参数量28.59M,GMACs 4.47,激活量13.44M。224x224输入时Top-1准确率84.186%,384x384输入时达85.118%。适用于图像分类、特征提取和图像嵌入等计算机视觉任务。
resnet50_gn.a1h_in1k - ResNet-B架构图像分类模型结合先进训练方法
GithubHuggingfaceImageNetResNettimm图像分类开源项目模型神经网络
resnet50_gn.a1h_in1k是基于ResNet-B架构的图像分类模型,集成了多项先进训练技术。模型采用ReLU激活函数、单层7x7卷积与池化、1x1卷积快捷连接下采样等结构。在ImageNet-1k数据集上训练时,应用了LAMB优化器、增强型dropout、随机深度和RandAugment等方法。模型参数量为25.6M,GMACs为4.1,训练输入尺寸为224x224,测试输入尺寸为288x288。该模型可应用于图像分类、特征提取和图像嵌入等多种计算机视觉任务。
convnextv2_nano.fcmae_ft_in1k - 基于FCMAE的ConvNeXt-V2高效图像分类与特征提取模型
ConvNeXt V2GithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习特征提取
ConvNeXt-V2模型通过全卷积掩码自动编码器框架进行预训练,并在ImageNet-1k数据集上进行微调。该模型具备15.6百万参数,支持多种图像尺寸处理,训练尺寸为224x224,测试尺寸为288x288。借助timm库,它可执行图像分类、特征提取和图像嵌入,适用于多种应用场景。
convnextv2_tiny.fcmae_ft_in1k - ConvNeXt-V2轻量级图像分类和特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型预训练模型
convnextv2_tiny.fcmae_ft_in1k是基于ConvNeXt-V2架构的轻量级图像分类模型。该模型通过全卷积masked自编码器预训练,在ImageNet-1k数据集微调,拥有2860万参数。它可用于图像分类、特征图提取和图像嵌入,在ImageNet验证集上Top-1准确率达82.92%。这是一个在性能和效率间取得平衡的优秀选择。
edgenext_small.usi_in1k - 轻量级CNN-Transformer混合模型EdgeNeXt用于移动视觉应用
EdgeNeXtGithubHuggingfaceImageNet图像分类开源项目模型特征提取神经网络
edgenext_small.usi_in1k是一款轻量级CNN-Transformer混合模型,针对移动视觉应用优化。该模型在ImageNet-1k数据集上训练,参数量为5.6M,GMACs为1.3。它支持图像分类、特征图提取和图像嵌入等功能,结合CNN和Transformer优势,在保持性能的同时减少计算资源需求,适合在资源受限的移动设备上运行。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号