Project Icon

repvit_m1.dist_in1k

ImageNet-1k高效图像分类与特征提取开源项目

repvit_m1.dist_in1k是RepViT家族中的高效图像分类模型,专为ImageNet-1k数据集优化,应用蒸馏技术增强性能。模型参数为5.5M,0.8 GMACs,支持224x224图像尺寸。设计灵感源于对移动CNN的创新探索,结合ViT视角。详情请参考相关arXiv文献。该模型能够执行图像分类、特征提取和图像嵌入等任务,适合的研究和工程应用。

wide_resnet101_2.tv_in1k - 宽残差网络101_2图像分类与特征提取功能
GithubHuggingfaceImageNet-1kReLU激活wide_resnet101_2.tv_in1k图像分类开源项目模型特征提取
Wide-ResNet101_2.tv_in1k是一种经ImageNet-1k数据训练的图像分类模型,采用ReLU激活、7x7卷积以及1x1卷积捷径降采样。该模型在图像分类和特征图提取方面表现优秀,可通过timm库轻松集成,是图像处理和计算机视觉领域的实用工具。
vit_tiny_patch16_384.augreg_in21k_ft_in1k - ViT-Tiny 轻量级视觉转换器模型实现图像分类与特征提取
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
ViT-Tiny是一款轻量级视觉转换器模型,专为图像分类和特征提取而设计。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了先进的数据增强和正则化技术。模型仅有5.8M参数,能处理384x384尺寸的图像,通过timm库可轻松加载用于推理或进一步微调。ViT-Tiny在保持高性能的同时,大幅降低了计算资源需求,适合各类图像识别应用场景。
efficientnetv2_rw_s.ra2_in1k - EfficientNetV2架构的轻量级图像分类模型
EfficientNetV2GithubHuggingfaceImageNet图像分类开源项目机器学习模型模型深度学习
基于EfficientNetV2架构的图像分类模型,通过timm框架实现,使用RandAugment数据增强和RMSProp优化器在ImageNet-1k数据集训练。模型参数量23.9M,计算量4.9 GMACs,训练分辨率288x288,测试分辨率384x384。支持图像分类、特征图提取和图像嵌入等功能。
vgg19_bn.tv_in1k - VGG19架构的ImageNet预训练图像分类模型
GithubHuggingfaceImageNet-1kVGGtimm图像分类开源项目模型特征提取
vgg19_bn.tv_in1k是一个在ImageNet-1k数据集上预训练的VGG19模型,拥有1.437亿参数。该模型适用于图像分类、特征提取和嵌入生成等多种计算机视觉任务。通过timm库,用户可以方便地加载和使用这个模型,实现高精度的图像识别功能。模型在保持较高计算效率的同时,还提供了多种使用方式,如图像分类、特征图提取和图像嵌入等。
crossvit_9_240.in1k - 跨注意力多尺度视觉Transformer图像分类模型
CrossViTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络模型
CrossViT 9 240是IBM开发的图像分类模型,基于CrossViT架构设计。该模型在ImageNet-1k数据集上训练,参数量为8.6M,适用于240x240分辨率图像。模型采用跨注意力多尺度Vision Transformer技术,可高效提取图像特征,适用于图像分类和特征提取任务。研究人员和开发者可通过timm库使用该预训练模型进行推理或微调。
rexnet_100.nav_in1k - 轻量级ReXNet图像分类模型 为资源受限场景提供高效解决方案
GithubHuggingfaceImageNet-1kReXNet图像分类开源项目模型模型比较特征提取
rexnet_100.nav_in1k是一款基于ReXNet架构的轻量级图像分类模型,在ImageNet-1k数据集上进行了预训练。该模型仅有4.8M参数和0.4 GMACs,适合在计算资源有限的环境中部署。它支持图像分类、特征图提取和图像嵌入等功能,为开发者提供多样化的应用选择。在ImageNet-1k验证集上,该模型展现出77.832%的Top-1准确率和93.886%的Top-5准确率,在轻量级模型中表现优异。
vit_large_patch16_224.augreg_in21k_ft_in1k - 预训练ViT大模型实现高性能图像分类与特征提取
GithubHuggingfaceImageNettimm图像分类开源项目模型视觉转换器迁移学习
这是一个基于Vision Transformer (ViT)架构的大型图像处理模型,在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调。模型采用了先进的数据增强和正则化技术,适用于图像分类和特征提取任务。它包含3.04亿参数,处理224x224尺寸的输入图像。通过TIMM库,用户可以方便地使用该模型进行图像分类和特征嵌入提取。由于在大规模数据集上训练,该模型展现出卓越的图像理解能力。
convit_small.fb_in1k - ConViT结合软卷积特性的图像分类框架
ConViTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络
ConViT是一个在ImageNet-1k数据集上训练的图像分类模型,结合了CNN和Transformer优势。模型参数量2780万,支持224x224图像输入,可用于分类和特征提取任务。模型提供预训练权重,适用于多种计算机视觉应用场景。
efficientnetv2_rw_m.agc_in1k - EfficientNetV2模型:图像分类与多功能特征提取
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型模型使用
EfficientNetV2是一个在timm库中实现的高效图像分类模型。通过使用以ResNet Strikes Back为基础的训练策略和SGD优化器(带Nesterov动量),结合自适应梯度剪裁,模型在ImageNet-1k数据集上进行训练。这一架构轻量且强大,支持包括图像分类、特征提取和图像嵌入的多种图像处理任务。
tf_mobilenetv3_small_minimal_100.in1k - MobileNetV3小型化模型:高效移动端图像分类
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
tf_mobilenetv3_small_minimal_100.in1k是一款针对移动设备优化的轻量级图像分类模型。基于MobileNet-v3架构,该模型在ImageNet-1k数据集上训练,仅有200万参数和0.1 GMACs,适用于224x224像素的图像输入。除图像分类外,它还可作为特征提取器用于其他计算机视觉任务。通过timm库,开发者可以方便地加载预训练模型,实现图像分类、特征图提取和图像嵌入等功能。这个模型平衡了性能和效率,特别适合资源受限的移动应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号