Project Icon

resmlp_12_224.fb_in1k

ResMLP架构的数据高效图像分类模型

resmlp_12_224.fb_in1k是Facebook Research团队基于ResMLP架构开发的图像分类模型,在ImageNet-1k数据集上训练。该模型采用前馈网络结构,拥有1540万参数,支持224x224像素图像处理。除图像分类外,还可作为特征提取骨干网络使用。通过timm库,研究者可方便地加载预训练模型进行图像分类或特征提取。该模型展现了数据高效训练在视觉任务中的潜力,为计算机视觉领域提供了新的解决方案。

mlp - 多层感知器实现n-gram语言模型的开源项目
GithubPyTorch多层感知器开源项目神经网络自动微分自然语言模型
该项目基于Bengio等人2003年的论文,实现了多层感知器(MLP)作为n-gram语言模型。项目提供C、NumPy和PyTorch三种实现,展示了从底层操作到高级抽象的不同层次。通过对比,突出了PyTorch在Tensor处理、自动微分和深度学习层构建方面的优势。相比传统n-gram模型,此方法以较少参数实现更低验证损失,但训练成本较高。
tensorflow-image-models - 将PyTorch图像模型移植到TensorFlow的预训练模型库
GithubTensorFlow图像模型开源项目机器学习深度学习预训练权重
tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。
ml-cvnets - 灵活的计算机视觉模型训练库
CVNetsGithub图像分类对象检测开源项目模型训练计算机视觉
CVNets是一个计算机视觉库,支持研究人员和工程师训练和评估多种计算机视觉模型,包括对象分类、对象检测和语义分割等任务。最新版本引入了直接处理文件字节的Transformer和高效在线增强,支持如Mask R-CNN、EfficientNet、Swin Transformer和ViT等模型,并增强了蒸馏功能。
ppl.nn - 用于 AI 推理的高性能深度学习推理引擎
GithubONNXOpenMMLabPPLNN卷积神经网络开源项目深度学习推理
PPLNN是一款高效的深度学习推理引擎,兼容各种ONNX模型,并对OpenMMLab进行了优化。其最新的LLM引擎包括闪存注意力、分裂K注意力、动态批处理和张量并行等功能,并支持INT8分组和通道量化。项目发布了多个LLM模型,如LLaMA、ChatGLM和Baichuan,并提供详细的构建和集成指南。
MambaVision - 高效且灵活的视觉骨干网络,适用于各种分辨率的图像处理
GithubHugging FaceMambaVision图像分类开源项目深度学习计算机视觉
MambaVision采用混合Mamba-Transformer架构,结合自注意力和混合块,实现了卓越的图像分类和特征提取效果。其创新的对称路径设计提升了全局上下文的建模能力,并提供多种预训练模型。MambaVision支持多种分辨率图像处理,适用于分类、检测和分割等任务。最新模型支持Hugging Face和pip包,详细信息见[官网](https://huggingface.co/collections/nvidia/mambavision-66943871a6b36c9e78b327d3)。
facenet - 基于TensorFlow的高精度面部识别开源项目
FaceNetGithubInception ResNet v1TensorFlow人脸识别开源项目预训练模型
FaceNet,一个基于TensorFlow的开源面部识别项目,采用最新的深度学习技术和数据集(如CASIA-WebFace和VGGFace2)开发。其准确率可达99.65%,并使用MTCNN进行高效的面部对齐。适合需求高级面部识别技术的开发者和科研人员。
sparseml - 神经网络优化工具,简化代码实现高效稀疏模型
GithubSparseML开源项目推理优化模型优化神经网络稀疏化
SparseML是开源模型压缩工具包,使用剪枝、量化和蒸馏算法优化推理稀疏模型。可导出到ONNX,并与DeepSparse结合,在CPU上实现GPU级性能。适用于稀疏迁移学习和从零开始的稀疏化,兼容主流NLP和CV模型,如BERT、YOLOv5和ResNet-50,实现推理速度和模型大小的显著优化。
DenseNet - DenseNet高效内存卷积网络
CIFAR-10CVPR 2017DenseNetGithubImageNet开源项目模型
DenseNet通过每层与其他层的直接连接,提升图像识别准确性并减少参数和计算量。最新版本内存效率更高,支持CIFAR和ImageNet数据集,提供PyTorch、TensorFlow、Keras等深度学习框架的实现代码,适合研究和应用。
fastmlx - FastMLX为MLX模型提供高性能托管API 支持视觉和语言模型
APIFastMLXGithubMLX模型图像处理开源项目机器学习
FastMLX是一个高性能API,用于托管MLX模型,包括视觉语言模型和语言模型。它提供OpenAI兼容接口,支持动态模型加载、多种模型类型和图像处理。FastMLX具有高效的资源管理能力,易于集成和扩展。通过多工作进程并行处理,提高了系统吞吐量和响应速度。此外,FastMLX支持函数调用功能,进一步增强了其多功能性。
MambaOut - 高效视觉模型展示简洁架构卓越性能
GithubMambaOut图像分类开源项目深度学习神经网络计算机视觉
MambaOut是一种新型视觉模型架构,通过堆叠门控CNN块构建,无需使用复杂的状态空间模型。在ImageNet图像分类任务中,它的性能超越了现有的视觉Mamba模型,同时具有较低的参数量和计算复杂度。该项目提供了从轻量级MambaOut-Femto到大型MambaOut-Base的多个预训练模型,在准确率和效率间实现平衡。研究人员可利用提供的代码和教程复现结果或应用于自身任务。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号