Project Icon

resnet18.fb_swsl_ig1b_ft_in1k

基于ResNet-B的ReLU激活图像分类模型

本项目展示ResNet-B模型,用于图像分类,特征包括ReLU激活、7x7卷积池化和1x1卷积下采样。模型在Instagram-1B数据集上以半监督学习预训练,并在ImageNet-1k数据集上微调,适用于特征提取和图像嵌入。

ese_vovnet39b.ra_in1k - 高效实时的VoVNet-v2图像分类解决方案
GithubHuggingfaceImageNet-1kVoVNet-v2timm图像分类开源项目模型特征提取
VoVNet-v2是一种预训练于ImageNet-1k的图像分类模型,含高效计算和低能耗优点,并采用RandAugment优化。适用于特征骨干网络,支持图像分类、特征提取和图像嵌入。其关键性能包括24.6M参数、7.1 GMACs等。通过`timm`库,用户可以实现高效的图像分类和特征提取。模型使用ResNet Strikes Back的训练方案,提高了准确度和应用多样性。
tf_efficientnet_b0.ns_jft_in1k - EfficientNet变体用于图像分类与特征提取
EfficientNetGithubHuggingface图像分类开源项目模型特征提取神经网络迁移学习
tf_efficientnet_b0.ns_jft_in1k模型基于EfficientNet架构,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上训练。拥有520万参数,0.4 GMAC,支持224x224图像输入。这一轻量级模型适用于图像分类、特征提取和嵌入生成,为计算机视觉应用提供高效且多功能的解决方案。
dm_nfnet_f0.dm_in1k - NFNet:无归一化层的高效图像分类模型
GithubHuggingfaceImageNet-1kNFNettimm图像分类开源项目模型特征提取
dm_nfnet_f0.dm_in1k是一款基于NFNet(无归一化网络)架构的图像分类模型。该模型在ImageNet-1k数据集上训练,拥有7150万参数,计算量为7.2 GMACs。通过采用Scaled Weight Standardization技术和策略性放置的标量增益,该模型无需使用归一化层即可实现高性能。dm_nfnet_f0.dm_in1k适用于图像分类、特征提取和图像嵌入等多种任务,为大规模图像识别应用提供了高效解决方案。
efficientnet_lite0.ra_in1k - 轻量级EfficientNet模型用于图像分类和特征提取
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_lite0.ra_in1k是一个在ImageNet-1k数据集上训练的轻量级图像分类模型。它使用RandAugment数据增强和RMSProp优化器,仅有4.7M参数和0.4 GMACs,适合资源受限环境。该模型支持图像分类、特征图提取和图像嵌入,通过timm库实现,提供简洁API接口,便于快速部署。
rexnet_150.nav_in1k - 高效的图像识别与特征提取
GithubHuggingfaceImageNet-1kReXNettimm图像分类开源项目模型特征提取
ReXNet是一款在ImageNet-1k数据集上预训练的图像分类模型,具有9.7M参数和0.9 GMACs,专为224x224尺寸图像设计。在timm库中实现模型调用,支持图像分类、特征地图提取及嵌入计算,堪称参数量与准确率之间的理想平衡,适用于深度学习研究和开发。
lcnet_050.ra2_in1k - LCNet轻量级神经网络模型实现高效图像分类和特征提取
GithubHuggingfaceImageNet-1kLCNettimm图像分类开源项目模型特征提取
lcnet_050.ra2_in1k是基于LCNet架构的轻量级图像分类模型,在ImageNet-1k数据集上训练。模型采用RandAugment增强和RMSProp优化,参数量仅1.9M,支持224x224输入。可用于图像分类、特征提取和嵌入生成,适合CPU运行,为计算资源有限的场景提供高效解决方案。
tf_efficientnet_l2.ns_jft_in1k - EfficientNet架构的大规模图像识别与特征提取模型
EfficientNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习神经网络
基于EfficientNet架构开发的图像分类模型,采用Noisy Student半监督学习方法,结合ImageNet-1k和JFT-300m数据集进行训练。模型支持800x800分辨率输入,包含4.8亿参数,可用于图像分类、特征提取和嵌入向量生成。借助timm库实现模型的快速部署,适用于各类图像识别任务。
tinynet_a.in1k - 轻量级图像分类模型 TinyNet 实现高效特征提取
GithubHuggingfaceImageNetTinyNet图像分类开源项目模型深度学习神经网络
tinynet_a.in1k是基于ImageNet-1k数据集训练的轻量级图像分类模型。它仅有6.2M参数和0.3 GMACs,适用于192x192像素的图像处理。该模型可用于图像分类、特征图提取和图像嵌入,在资源受限环境中表现出色。通过timm库,开发者可以方便地使用预训练模型进行各种计算机视觉任务。tinynet_a.in1k在保持高效性能的同时,为图像处理应用提供了一个轻量化解决方案。
tf_efficientnetv2_m.in21k_ft_in1k - EfficientNetV2的图片识别与特征提取
EfficientNet-v2GithubHuggingface图像分类图像嵌入开源项目模型深度学习特征提取
EfficientNetV2模型在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,最初使用TensorFlow构建,由Ross Wightman移植至PyTorch。其参数量为54.1M,能够在不同分辨率下实现精确的图像识别,并支持通过timm库执行图像分类、特征提取和嵌入生成等多任务。
tf_efficientnet_b5.ns_jft_in1k - 精准描述EfficientNet的图像分类与特征提取能力
EfficientNetGithubHuggingfaceImageNetNoisy Studenttimm图像分类开源项目模型
模型tf_efficientnet_b5.ns_jft_in1k,根植于EfficientNet,经过Noisy Student半监督学习技术在Tensorflow上训练后移植至PyTorch,专用于ImageNet-1k和JFT-300m未标记数据集的图像分类,具有优越的准确性和效能。其结构简洁,具备卓越的特征提取和图像嵌入能力,在多种计算机视觉任务中广泛应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号