Project Icon

spnasnet_100.rmsp_in1k

使用Single-Path NAS技术设计的轻量级图像分类模型

spnasnet_100.rmsp_in1k是基于Single-Path NAS技术的轻量级图像分类模型,在ImageNet-1k数据集上训练。模型仅有440万参数和0.3 GMACs,适合资源受限场景。支持图像分类、特征图提取和图像嵌入等应用。通过timm库可轻松加载此预训练模型进行推理或微调。模型采用RMSProp优化器和指数衰减学习率调度,在保持高效性的同时确保了分类性能。

InSPyReNet - 优化显著目标检测的高分辨率图像金字塔网络
GithubInSPyReNetPyTorch图像金字塔开源项目显著性目标检测高分辨率图像
本项目介绍了一种基于图像金字塔的显著目标检测框架,称为逆显著性金字塔重构网络(InSPyReNet)。该方法无需高分辨率数据集即可进行高分辨率预测,并通过多尺度的图像融合解决感受野差异问题。实验结果表明,InSPyReNet在多项显著目标检测指标和边界精度上优于现有方法。项目提供了PyTorch实现,支持多GPU训练,且在HuggingFace等平台上提供了Web演示和命令行工具。
InternImage - 突破大规模视觉基础模型性能极限
GithubInternImage图像分类大规模视觉模型开源项目目标检测语义分割
InternImage是一款采用可变形卷积技术的大规模视觉基础模型。它在ImageNet分类任务上实现90.1%的Top1准确率,创下开源模型新纪录。在COCO目标检测基准测试中,InternImage达到65.5 mAP,成为唯一突破65.0 mAP的模型。此外,该模型在涵盖分类、检测和分割等任务的16个重要视觉基准数据集上均展现出卓越性能,树立了多个领域的新标杆。
nni - 可自动执行特征工程、神经架构搜索、超参数调优和深度学习的模型压缩
GithubNNI开源项目架构搜索模型压缩神经网络智能优化超参数调整
NNI提供一站式解决方案,支持自动化的特征工程、神经架构搜索、超参数调整和模型压缩。它兼容多种框架,并提供详尽的API、丰富的示例及全面的教程。适用于多种训练环境,包括本地、远程SSH服务器和Kubernetes,帮助推动开源社区的技术发展。
sparsezoo - 高效稀疏神经网络模型库
GithubNeuralmagicSparseZoo开源项目模型库深度学习稀疏化模型
SparseZoo是一个不断扩展的神经网络模型库,包含高度稀疏和稀疏量化模型,以及相应的稀疏化配方。它简化并加速深度学习模型的开发,帮助实现高效推理。用户可以通过API或云端访问这些模型及其配方,并进行迁移学习或配方迁移。SparseZoo支持多种稀疏化算法和不同推理性能的模型,并提供全面的文档和社区支持。
CLIP-ImageSearch-NCNN - 利用CLIP快速进行手机相册中的自然语言图像搜索
CLIPGithubncnn图片搜索开源项目模型自然语言检索
CLIP-ImageSearch-NCNN项目在移动设备和x86平台上使用CLIP模型实现了自然语言图像检索功能。通过图像和文本特征提取,支持以图搜图、以字搜图等多种搜索方式,提供高效的图像搜索体验。项目包含适用于Android和x86平台的demo,利用ncnn进行部署,广泛适用于手机相册等图像搜索应用。
espnet_onnx - 轻量级语音识别和合成库 基于ONNX格式优化
GithubONNXespnet_onnx开源项目模型导出语音合成语音识别
espnet_onnx是一个将ESPnet模型导出为ONNX格式的实用库,支持语音识别和语音合成任务。该库提供简洁的API接口,便于模型导出和推理。通过ONNX Runtime实现高效的CPU和GPU计算,并支持流式语音识别。用户可从预训练或自定义模型中轻松导出,并进行优化和量化以提升性能。无需PyTorch依赖,适合轻量级部署。
darts - 使用DARTS算法高效设计图像分类和语言建模架构
DARTSGithubPyTorch卷积架构图像分类开源项目语言建模
DARTS算法通过连续松弛和梯度下降,在架构空间中高效设计用于图像分类(CIFAR-10和ImageNet)和语言建模(Penn Treebank和WikiText-2)的高性能卷积和循环架构。只需一块GPU即可运行,提供预训练模型及详细的架构搜索和评估指南,支持自定义架构的可视化。
OnnxStream - 适用于低资源设备的模型运行的内存优化的推理库
GithubMistral 7BOnnxStreamStable Diffusion XLTinyLlama开源项目性能
OnnxStream专为优化内存使用而设计,支持在低资源设备上高效运行大型模型如Stable Diffusion和TinyLlama。在仅有512MB RAM的Raspberry Pi Zero 2上,实现图像生成和语言模型推理,而无需额外交换空间或磁盘写入。通过解耦推理引擎与模型权重组件,OnnxStream显著降低内存消耗,提供轻量且高效的推理解决方案。其静态量化和注意力切片技术增强了多种应用中的适应性和性能。
nnom - 适用于微控制器的神经网络库
GithubMicrocontrollerNNoMNeural Network开源项目灵活性高性能
NNoM 是为微控制器设计的高层次神经网络推理库,支持如 Inception、ResNet 和 DenseNet 等复杂结构,可一键部署 Keras 模型并提供用户友好的界面。其高性能后端选择和预编译功能确保了运行时零损耗,同时提供完整的评估工具如运行时分析和混淆矩阵。最新的 v0.4.x 版本新增了循环层(RNN)支持,并切换到更适合机器处理的结构化接口。与 TensorFlow Lite 和 STM32Cube.AI 的对比显示,NNoM 在推理时间和内存占用方面表现出色。
mcunet - 面向微控制器的深度学习框架
GithubMCUNetTinyEngine开源项目微控制器深度学习物联网设备
MCUNet是面向微控制器的系统-算法协同设计框架,包含TinyNAS和TinyEngine两大核心组件。该框架在严格内存限制下提升深度学习性能,相比现有方案推理速度提高1.5-3倍,内存占用降低2.7-4.8倍。MCUNet为IoT应用提供高效深度学习基础设施,推动边缘AI发展。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号