Project Icon

tf_efficientnetv2_xl.in21k_ft_in1k

EfficientNet-v2开源图像分类与特征抽取模型

EfficientNet-v2模型在ImageNet-21k上预训练并在ImageNet-1k上微调,具备图像分类、特征提取与图像嵌入功能。初始使用Tensorflow训练,后由Ross Wightman移植至PyTorch。模型拥有208.1百万参数与52.8 GMACs计算量,支持训练时384x384与测试时512x512的图像尺寸。通过timm库,便可创建预训练模型,用于图像分类及特征映射。本模型在研究与应用中表现出强大的性能及灵活性。

tf_efficientnet_b0.ns_jft_in1k - EfficientNet变体用于图像分类与特征提取
EfficientNetGithubHuggingface图像分类开源项目模型特征提取神经网络迁移学习
tf_efficientnet_b0.ns_jft_in1k模型基于EfficientNet架构,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上训练。拥有520万参数,0.4 GMAC,支持224x224图像输入。这一轻量级模型适用于图像分类、特征提取和嵌入生成,为计算机视觉应用提供高效且多功能的解决方案。
efficientnetv2_rw_t.ra2_in1k - EfficientNet-v2的模型特点与应用分析
EfficientNet-v2GithubHuggingfaceImageNet-1ktimm图像分类开源项目模型特征提取
EfficientNet-v2是一个专注于图像分类的高效模型,采用RandAugment策略在ImageNet-1k数据集上训练,具有参数少、训练快的特点。通过timm库实现,支持特征图提取和图像嵌入等多种功能。其结构设计为强大的特征骨干提供了基础。
efficientnet_b5.sw_in12k_ft_in1k - EfficientNet-加强版:适用于图像分类与特征提取的高效模型
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
EfficientNet模型结合了Swin Transformer的优化策略,经过ImageNet-12k预训练及ImageNet-1k微调,适用于图像识别、特征提取和嵌入生成。该模型使用AdamW优化器、梯度裁剪和余弦退火学习率等技术,提供高效的图像分类解决方案。
tf_efficientnet_b1.ns_jft_in1k - EfficientNet图像分类模型,无监督学习的图像标杆
EfficientNetGithubHuggingfaceJFT-300mPyTorch半监督学习图像分类开源项目模型
本项目是一个EfficientNet图像分类模型,通过Noisy Student半监督学习在ImageNet-1k和JFT-300m数据集上使用Tensorflow训练,并移植到PyTorch中。它可以执行图像分类、特征提取和嵌入生成。拥有仅7.8M参数和高计算效率,适合研究深度学习模型的缩放和性能优化。
tf_efficientnet_b3.ns_jft_in1k - 结合EfficientNet架构的神经网络图像处理模型
EfficientNetGithubHuggingfaceImageNet图像分类开源项目模型深度学习特征提取
该模型采用EfficientNet架构,通过Noisy Student半监督学习方法在ImageNet-1k和JFT-300m数据集训练。模型参数量1220万,支持300x300分辨率图像处理,可实现图像分类、特征提取和图像嵌入等功能。模型结合高效的网络架构和半监督学习技术,在图像处理任务中表现出色。
efficientnetv2_rw_s.ra2_in1k - EfficientNetV2架构的轻量级图像分类模型
EfficientNetV2GithubHuggingfaceImageNet图像分类开源项目机器学习模型模型深度学习
基于EfficientNetV2架构的图像分类模型,通过timm框架实现,使用RandAugment数据增强和RMSProp优化器在ImageNet-1k数据集训练。模型参数量23.9M,计算量4.9 GMACs,训练分辨率288x288,测试分辨率384x384。支持图像分类、特征图提取和图像嵌入等功能。
tf_efficientnet_b7.ns_jft_in1k - EfficientNet B7图像分类模型 基于Noisy Student半监督学习
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型模型卡
模型采用EfficientNet B7架构,结合Noisy Student半监督学习,在ImageNet-1k和JFT-300m数据集上训练。参数量66.3M,输入图像尺寸600x600,支持图像分类、特征提取和嵌入向量生成。已从TensorFlow移植至PyTorch,可应用于高精度图像识别任务。
efficientnet_lite0.ra_in1k - 轻量级EfficientNet模型用于图像分类和特征提取
EfficientNetGithubHuggingfaceImageNettimm图像分类开源项目模型深度学习
efficientnet_lite0.ra_in1k是一个在ImageNet-1k数据集上训练的轻量级图像分类模型。它使用RandAugment数据增强和RMSProp优化器,仅有4.7M参数和0.4 GMACs,适合资源受限环境。该模型支持图像分类、特征图提取和图像嵌入,通过timm库实现,提供简洁API接口,便于快速部署。
inception_resnet_v2.tf_in1k - Inception-ResNet-v2架构的图像分类与特征提取模型
GithubHuggingfaceImageNet-1kinception_resnet_v2timm图像分类开源项目模型特征提取
inception_resnet_v2.tf_in1k是基于Inception-ResNet-v2架构的图像分类模型,在ImageNet-1k数据集上训练。模型拥有5580万参数,13.2 GMACs计算量,适用于299x299像素的输入图像。除图像分类外,该模型还支持特征图提取和图像嵌入功能。它在保持较低计算复杂度的同时提供高精度图像识别能力,适用于多种计算机视觉任务。
efficientnet-b0 - EfficientNet的复合系数法在资源有限设备上提升图像分类效果
EfficientNetGithubHuggingfaceImageNet卷积神经网络图像分类开源项目模型模型缩放
EfficientNet是一种训练于ImageNet-1k数据集、分辨率为224x224的卷积模型。该模型提出了复合系数方法,以均衡缩放模型的深度、宽度和分辨率。在移动设备上表现卓越,适用于图像分类。同时,用户可在Hugging Face平台上获取特定任务的微调版本。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号