Project Icon

vgg19.tv_in1k

VGG19深度卷积网络在ImageNet数据集上的图像分类与特征提取

针对图像识别任务,VGG19模型在ImageNet-1k数据集上采用原始的torchvision权重训练,支持224x224像素的输入图像。其140M+参数配置使得模型能够处理复杂的图像特征,包括分类、特征提取和嵌入应用,只需适用模型提供的转换配置即可实现高效部署。

video_features - 多模态视频特征提取框架 支持多种深度学习模型
GitHub项目Github多模态分析开源项目深度学习模型视频特征提取计算机视觉
video_features是一个开源的视频特征提取框架,支持视觉、音频和光流等多种模态。该框架集成了S3D、R(2+1)d、I3D-Net等动作识别模型,VGGish声音识别模型,以及RAFT光流提取模型。它支持多GPU和多节点并行处理,可通过命令行或Colab快速使用。输出格式灵活,适用于视频分析相关的研究和应用。
GiT - 通用视觉Transformer模型实现多任务统一
GiTGithub多任务学习开源项目视觉Transformer计算机视觉语言接口
GiT是一种通用视觉Transformer模型,采用单一ViT架构处理多种视觉任务。该模型设计简洁,无需额外视觉编码器和适配器。通过统一语言接口,GiT实现了从目标检测到图像描述等多任务能力。在多任务训练中,GiT展现出任务间协同效应,性能超越单任务训练且无负迁移。GiT在零样本和少样本测试中表现优异,并随模型规模和数据量增加而持续提升性能。
efficientvit - EfficientViT多尺度线性注意力用于高分辨率密集预测
EfficientViTGithub图像分割开源项目模型优化深度学习计算机视觉
EfficientViT是一种新型ViT模型,专注于高效处理高分辨率密集预测视觉任务。其核心是轻量级多尺度线性注意力模块,通过硬件友好操作实现全局感受野和多尺度学习。该项目提供图像分类、语义分割和SAM等应用的预训练模型,在性能和效率间达到平衡,适合GPU部署和TensorRT优化。
pytorch-image-models - 全面的PyTorch图像模型集合
GithubPyTorch图像模型开源项目深度学习神经网络计算机视觉
pytorch-image-models是一个综合性PyTorch图像模型库,提供最新计算机视觉模型、预训练权重和训练脚本。库中包含CNN和Transformer等多种架构,支持迁移学习和特征提取。项目不断更新,近期新增MobileNetV4模型并优化现有模型性能。该库为计算机视觉研究和开发提供了丰富的工具和资源。
VILA - 创新的视觉语言模型预训练方法
GithubVILA多模态开源项目视觉语言模型量化预训练
VILA是一种新型视觉语言模型,采用大规模交错图像-文本数据预训练,增强了视频和多图像理解能力。通过AWQ 4位量化和TinyChat框架,VILA可部署到边缘设备。该模型在视频推理、上下文学习和视觉思维链等方面表现出色,并在多项基准测试中获得了优异成绩。项目完全开源,包括训练和评估代码、数据集以及模型检查点。
image-gpt - 支持多数据集的生成预训练模型
CIFAR10Fashion-MNISTGithubImage GPTPyTorch开源项目生成式预训练
Image GPT是一个基于生成像素预训练模型(Generative Pretraining from Pixels)的PyTorch实现,支持多种预训练模型和数据集。该项目允许下载预训练模型、量化图像、进行生成预训练和分类微调。它还具有BERT风格的预训练、支持加载OpenAI预训练模型等功能。目前,使用单个NVIDIA 2070 GPU可在Fashion-MNIST上实现高效训练,简化了多种图像数据集上的生成模型训练和应用流程。
imgclsmob - 深度学习卷积网络的研究与实现,涵盖多种框架和预训练模型
GithubMXNetPyTorchTensorFlowcomputer visiondeep learning开源项目
此存储库专注于计算机视觉领域的卷积网络研究,包含多种分类、分割、检测和姿态估计模型的实现,支持MXNet/Gluon、PyTorch、Chainer、Keras和TensorFlow等框架。提供了训练、评估和转换的脚本以及针对不同框架的PIP包,模型预训练于ImageNet、CIFAR-10/100、SVHN等数据集,能够自动加载预训练权重。
facenet-pytorch - Pytorch下基于预训练模型和快速MTCNN的人脸识别技术
Face RecognitionGithubInception Resnet V1MTCNNPytorchVGGFace2开源项目
facenet-pytorch是一个开源项目,利用Pytorch实现的Inception Resnet (V1)模型,已在VGGFace2和CASIA-Webface上预训练。项目还包括高效的MTCNN实现,用于人脸检测。其特点包括快速人脸检测、生成面部识别嵌入、视频流中的人脸跟踪以及从TensorFlow到Pytorch的参数转换。开发者可以通过简单的安装和使用指引快速集成和应用这些高精度、高性能的预训练模型和工具。
InSPyReNet - 优化显著目标检测的高分辨率图像金字塔网络
GithubInSPyReNetPyTorch图像金字塔开源项目显著性目标检测高分辨率图像
本项目介绍了一种基于图像金字塔的显著目标检测框架,称为逆显著性金字塔重构网络(InSPyReNet)。该方法无需高分辨率数据集即可进行高分辨率预测,并通过多尺度的图像融合解决感受野差异问题。实验结果表明,InSPyReNet在多项显著目标检测指标和边界精度上优于现有方法。项目提供了PyTorch实现,支持多GPU训练,且在HuggingFace等平台上提供了Web演示和命令行工具。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号