Project Icon

vit_large_patch14_clip_224.openai_ft_in12k_in1k

视觉变压器用于图像分类和特征嵌入的高级应用

OpenAI开发的视觉变压器(ViT)模型在WIT-400M图像文本对上通过CLIP进行预训练,并在ImageNet-12k和ImageNet-1k上微调,适用于图像分类与特征嵌入生成。模型运行在timm库中,具有高参数量与计算效率,适用于高精度图像识别,支持实时与批量处理应用。

ViT-B-32__openai - CLIP模型的ONNX导出版本用于图像和文本嵌入生成
CLIPGithubHuggingfaceImmich图像编码器开源项目文本编码器模型自托管照片库
ViT-B-32__openai项目是CLIP模型的ONNX导出版本,将视觉和文本编码器分离为独立模型。这种设计适用于生成图像和文本嵌入,特别针对Immich自托管照片库。该项目可用于处理大量图像和文本数据,有助于改进图像检索和跨模态搜索功能。
vit_small_patch14_dinov2.lvd142m - 基于Vision Transformer的自监督图像特征提取模型
DINOv2GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取
这是一个基于Vision Transformer架构的图像特征提取模型。该模型采用DINOv2自监督学习方法,在LVD-142M数据集上预训练,拥有2210万参数,支持处理518x518尺寸的图像。模型可应用于图像分类和特征提取任务,并提供了相关的使用示例代码。作为一个无监督学习的视觉模型,它能够提取稳健的图像特征表示。
owlvit-large-patch14 - 基于Vision Transformer的零样本目标检测模型
GithubHuggingfaceOWL-ViT多模态模型开源项目模型物体检测视觉变换器零样本学习
OWL-ViT模型采用CLIP和Vision Transformer架构,实现了零样本文本条件目标检测。它可以根据文本查询识别图像中的物体,无需预先定义类别。该模型在大规模图像-文本数据集上进行训练,并在COCO和OpenImages等数据集上微调。OWL-ViT为计算机视觉研究提供了新的可能性,尤其在零样本目标检测领域。
vit_base_r50_s16_384.orig_in21k_ft_in1k - ResNet-Vision Transformer混合模型用于高精度图像分类
GithubHuggingfaceImageNetResNetVision Transformertimm图像分类开源项目模型
本模型结合ResNet与Vision Transformer优势,在大规模ImageNet-21k数据集上预训练,并在ImageNet-1k上微调,实现高效准确的图像分类。具备9900万参数,支持384x384像素输入,可用于分类任务和特征提取。研究人员可通过timm库轻松应用此模型,进行推理或深入研究。
DFN5B-CLIP-ViT-H-14 - 高性能图像-文本对比学习模型
CLIPDFN-5BGithubHuggingface图像分类开源项目模型深度学习计算机视觉
DFN5B-CLIP-ViT-H-14是一个基于CLIP架构的图像-文本对比学习模型,通过DFN技术从430亿图像-文本对中筛选出50亿高质量样本进行训练。模型在39个图像分类基准测试中表现优异,平均准确率达69.8%。支持零样本图像分类和跨模态检索,可与OpenCLIP无缝集成。这一模型为计算机视觉和自然语言处理领域提供了有力支持,适用于多种研究和应用场景。
DFN2B-CLIP-ViT-L-14 - 基于CLIP架构的大规模数据集训练图像识别模型
CLIPGithubHuggingface图像分类开源项目数据过滤网络机器学习模型计算机视觉
DFN2B-CLIP-ViT-L-14是一个基于CLIP架构的图像识别模型,采用数据过滤网络从128亿图像-文本对中筛选20亿高质量样本进行训练。该模型在多个基准测试中平均准确率达66.86%,可用于零样本图像分类等任务。模型提供OpenCLIP接口,便于开发者使用。DFN2B-CLIP-ViT-L-14体现了大规模数据集和先进算法在计算机视觉领域的应用,为图像理解提供有力支持。
vit-base-patch16-224-in21k - 基于ImageNet-21k预训练的视觉Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
这是一个基于Transformer架构的视觉模型,在包含1400万图像和21843个类别的ImageNet-21k数据集上预训练。模型将图像转换为16x16像素的固定大小patch序列,通过自注意力机制处理。它可用于图像分类等多种视觉任务,提供强大的特征提取能力。模型支持PyTorch和JAX/Flax框架,适用于需要高性能视觉理解的应用场景。
vit_small_patch16_224.dino - DINO训练的小型Vision Transformer图像特征模型
GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取自监督学习
vit_small_patch16_224.dino是一个采用DINO自监督方法训练的小型Vision Transformer模型。该模型拥有2170万参数,支持224x224像素图像输入,可用于图像分类和特征提取。通过timm库可快速部署,在ImageNet-1k数据集预训练后,为多种计算机视觉任务提供高质量的特征表示。
chinese-clip-vit-base-patch16 - 中文数据驱动的多模态对比学习工具
Chinese-CLIPGithubHuggingface图像识别多模态检索开源项目模型深度学习零样本学习
项目通过ViT和RoBERTa实现了中文CLIP模型,支持图像和文本的嵌入计算及相似性分析,具备零样本学习和图文检索功能。该模型在多项基准测试中表现优秀,包括MUGE、Flickr30K-CN等。结合其官方API,用户可轻松实现多场景中的图文转换与识别。详细信息和实施教程可在GitHub获取。
ViT-L-14-CLIPA-datacomp1B - CLIPA-v2模型实现低成本高性能零样本图像分类
CLIPAGithubHuggingfaceOpenCLIP对比学习开源项目模型视觉语言模型零样本图像分类
ViT-L-14-CLIPA-datacomp1B是一个基于CLIPA-v2架构的视觉-语言模型,在datacomp1B数据集上训练。该模型采用对比学习方法,能够进行零样本图像分类,在ImageNet上实现81.1%的准确率。通过OpenCLIP库,用户可以方便地进行图像和文本的特征编码。这个模型不仅性能优异,还具有训练成本低的特点,为计算机视觉研究提供了新的发展方向。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号