Project Icon

vit_large_patch14_clip_336.openai_ft_in12k_in1k

ViT图像分类与特征提取模型

OpenAI的ViT图像分类模型,利用CLIP在WIT-400M上预训练,并在ImageNet数据集上微调,适合多种视觉任务。其高性能参数为研究与开发提供强大支持,通过示例代码,可轻松实现图像分类与嵌入功能。

clip-vit-base-patch32 - OpenAI CLIP模型实现零样本图像分类的视觉语言预训练
CLIPGithubHuggingfaceOpenAI图像分类开源项目模型计算机视觉零样本学习
CLIP是OpenAI开发的视觉语言预训练模型,使用ViT-B/32和Transformer架构分别作为图像和文本编码器。通过对比学习训练,CLIP能实现零样本图像分类等任务,在多项计算机视觉基准测试中表现优异。尽管在细粒度分类和物体计数方面存在局限,CLIP为研究人员提供了探索模型鲁棒性和泛化能力的重要工具。
vit_base_patch16_224.orig_in21k_ft_in1k - 基于ImageNet大规模数据集的Vision Transformer模型
GithubHuggingfaceImageNetPyTorchVision Transformertimm图像分类开源项目模型
该Vision Transformer模型经过ImageNet-21k数据集预训练并在ImageNet-1k上微调,采用86.6M参数,适用于224x224图像的分类与特征提取。最初由论文作者在JAX上训练,并由Ross Wightman移植到PyTorch环境,可应用于图像分类和嵌入场景。
vit-base-patch16-224 - Vision Transformer图像分类模型在ImageNet数据集上的应用
GithubHuggingfaceImageNetVision Transformer图像分类开源项目机器学习模型神经网络
vit-base-patch16-224是一个基于Vision Transformer架构的图像分类模型,在ImageNet-21k数据集上预训练并在ImageNet 2012上微调。该模型采用16x16像素的图像分块和序列化处理方法,可高效处理224x224分辨率的图像。在多个图像分类基准测试中,vit-base-patch16-224展现出较好的性能,为计算机视觉任务提供了一种基于Transformer的新方案。
vit_giant_patch14_dinov2.lvd142m - 基于Vision Transformer的无监督视觉特征提取模型
DINOv2GithubHuggingfaceVision Transformer图像分类图像特征提取开源项目模型自监督学习
该项目介绍了使用DINOv2方法的Vision Transformer(ViT)模型,通过无监督学习在LVD-142M数据集上进行预训练。这一模型适用于图像分类和嵌入,帮助提取稳健的视觉特征以及实现高效的图像识别。ViT模型的参数量为1136.5M和1784.2 GMACs,显现出其出色的性能和灵活性。用户可以在GitHub查看和下载该模型的代码和更多资源。
vit_base_patch16_224.orig_in21k - Vision Transformer图像特征提取模型无分类头版本
GithubHuggingfaceVision Transformertimm图像分类开源项目模型特征提取预训练模型
vit_base_patch16_224.orig_in21k是一个基于Vision Transformer架构的图像特征提取模型,在ImageNet-21k数据集上预训练。模型采用16x16图像块处理,支持224x224输入尺寸,包含8580万参数。移除分类头设计使其专注于特征提取,适合迁移学习和微调。通过timm库可轻松应用于图像分类和特征提取任务,为计算机视觉研究提供有力支持。
vit_base_patch16_384.augreg_in21k_ft_in1k - Vision Transformer用于图像分类和特征提取的先进模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型深度学习
此Vision Transformer模型专注于图像分类和特征提取任务。经ImageNet-21k预训练和ImageNet-1k微调,采用先进的数据增强和正则化方法。支持384x384像素输入,拥有8690万参数。不仅可进行图像分类,还能生成图像嵌入。源自Google Research,经Ross Wightman移植到PyTorch,现已成为timm库的重要组成部分。
vit_base_patch8_224.dino - 将自监督DINO方法应用于视觉变换器以增强图像特征提取能力
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型特征提取自监督学习
该项目利用Vision Transformer (ViT) 和自监督DINO方法进行图像特征提取,支持图像分类和嵌入应用。模型在ImageNet-1k数据集上进行了预训练,具有85.8M参数,能够处理224 x 224分辨率的图像。由于其参数利用效率高,该模型在大规模数据集上表现良好,适合精确特征提取的视觉任务,增强图像识别及分析能力。通过`timm`库可轻松实现模型调用和图像处理,满足多种计算机视觉应用需求。
vit_large_patch14_dinov2.lvd142m - 基于DINOv2的大规模Vision Transformer视觉特征提取模型
DINOv2GithubHuggingfaceViTtimm图像分类开源项目模型特征提取
这是一个基于Vision Transformer架构的图像特征提取模型,采用DINOv2自监督学习方法在LVD-142M数据集上预训练。模型包含3.044亿参数,支持518x518像素输入,适用于图像分类和特征提取任务。该模型提供了完整的加载、预处理和推理示例代码,可应用于需要高质量视觉特征表示的各种计算机视觉场景。
vit_base_patch16_224.dino - 自监督训练的ViT模型实现高效图像特征提取
DINOGithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
vit_base_patch16_224.dino是一个基于Vision Transformer架构的图像特征提取模型。该模型采用自监督DINO方法在ImageNet-1k数据集上预训练,可用于图像分类和特征提取。模型包含8580万参数,支持224x224像素的输入图像。通过timm库,研究人员可以便捷地将其应用于多种计算机视觉任务,深入探索自监督学习在视觉领域的潜力。
vit-base-patch16-224-cifar10 - 视觉Transformer在CIFAR10上的图像分类优化
CIFAR10GithubHuggingfaceVision Transformer图像分类开源项目模型模型微调深度学习
Vision Transformer (ViT) 模型经过ImageNet-21k数据集的预训练,并在CIFAR10数据集上微调,适用于224x224分辨率的图像分类任务。采用16x16像素的固定大小图像补丁进行特征提取,为下游任务提供了有效支持。在GitHub上访问相关代码,了解如何将该技术应用到各种项目中。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号