Project Icon

vit_large_patch14_dinov2.lvd142m

基于DINOv2的大规模Vision Transformer视觉特征提取模型

这是一个基于Vision Transformer架构的图像特征提取模型,采用DINOv2自监督学习方法在LVD-142M数据集上预训练。模型包含3.044亿参数,支持518x518像素输入,适用于图像分类和特征提取任务。该模型提供了完整的加载、预处理和推理示例代码,可应用于需要高质量视觉特征表示的各种计算机视觉场景。

dinov2-large - 基于Vision Transformer的大规模自监督视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-large是基于Vision Transformer架构的大规模视觉模型,采用自监督学习方法训练。该模型能从海量未标注图像中学习视觉特征表示,适用于多种下游视觉任务。它将图像转换为固定大小的patch序列输入Transformer编码器,提取高质量特征。研究人员可直接使用其预训练编码器进行特征提取,或针对特定任务进行微调,体现了模型的通用性和灵活性。
vit-large-patch16-384 - Vision Transformer大模型,提升高分辨率图像分类表现
GithubHuggingfaceImageNetVision Transformertransformer图像分类开源项目模型深度学习
项目提供了预训练于ImageNet-21k并在ImageNet 2012上微调的Vision Transformer(ViT)大模型。ViT通过将图像分为固定大小的补丁并使用Transformer编码器进行解析,提升了分类精度和特征提取能力,支持高分辨率视觉识别任务并兼容PyTorch使用。
vit-large-patch32-384 - 基于Transformer架构的大规模图像分类模型
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer (ViT) 是一个基于Transformer架构的大型视觉模型,在ImageNet-21k数据集上预训练,并在ImageNet 2012数据集上微调。模型采用图像分块和序列化处理方法,支持384x384分辨率的输入。ViT在多个图像分类基准测试中表现优异,可用于图像分类、特征提取等计算机视觉任务。该模型支持PyTorch框架,适合研究人员和开发者使用。
vit-large-patch16-224-in21k - 基于ImageNet-21k预训练的大型Vision Transformer模型
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型计算机视觉预训练模型
该模型是在ImageNet-21k数据集(1400万图像,21843类别)上预训练的大型Vision Transformer (ViT)。它采用Transformer架构,将224x224分辨率的图像分割成16x16的patch序列进行处理。模型可提取强大的图像特征,适用于分类等多种下游视觉任务。用户可直接用于图像嵌入或在特定任务上微调。
dinov2-giant - 无监督大规模视觉特征学习模型
DINOv2GithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
DINOv2-giant是一款基于Vision Transformer架构的大规模视觉模型,采用DINOv2无监督学习方法训练。该模型能够从未标注的图像中提取强大的视觉特征,将图像分割为固定大小的块序列作为输入,通过Transformer编码器处理后输出图像的隐含表示。研究人员可利用此预训练模型作为基础,添加简单的线性层即可完成各种下游视觉任务的微调,为计算机视觉领域提供了强大的基础工具。
dinov2-small-imagenet1k-1-layer - 视觉特征学习的Transformer模型
DINOv2GithubHuggingfaceVision Transformer图像分类开源项目模型特征提取自监督学习
DINOv2方法无监督预训练的Vision Transformer,适用于影像特征学习增强场景。此小尺寸模型能在ImageNet-1k数据集上执行分类任务,通过提取特征来辅助下游任务。尽管模型未包含微调头,但可附加线性层进行标准分类,适合高精度视觉特征需求的应用。
dino-vits16 - DINO训练的小型Vision Transformer模型及其应用
DINOGithubHuggingfaceVision Transformer图像处理开源项目模型特征提取自监督学习
dino-vits16是一个基于DINO方法训练的小型Vision Transformer模型。该模型在ImageNet-1k数据集上进行自监督预训练,能够有效学习图像特征表示。它采用16x16像素的图像块作为输入,可应用于多种视觉任务。dino-vits16展示了自监督学习在计算机视觉领域的潜力,为图像分类等下游任务奠定了基础。
vit-large-patch16-224 - 大型视觉Transformer模型在ImageNet数据集上的图像分类实现
GithubHuggingfaceImageNetVision Transformer图像分类开源项目模型深度学习计算机视觉
Vision Transformer大型模型在ImageNet-21k数据集上完成预训练,包含1400万张图像和21,843个分类。模型通过将图像分割为16x16像素块进行处理,支持224x224分辨率输入,并在ImageNet 2012数据集上进行微调。该模型基于PyTorch框架实现,可用于图像分类等视觉任务。
vit-huge-patch14-224-in21k - 大型视觉Transformer模型实现高效图像识别与特征提取
GithubHuggingfaceImageNet-21kVision Transformer图像识别开源项目模型深度学习预训练模型
vit-huge-patch14-224-in21k是基于ImageNet-21k数据集预训练的大型视觉Transformer模型。它将图像分割为固定大小的块,通过Transformer编码器处理,可用于图像分类等多种计算机视觉任务。该模型提供了强大的图像特征提取能力,适用于各类下游视觉应用。
vit_large_patch16_224.augreg_in21k_ft_in1k - 预训练ViT大模型实现高性能图像分类与特征提取
GithubHuggingfaceImageNettimm图像分类开源项目模型视觉转换器迁移学习
这是一个基于Vision Transformer (ViT)架构的大型图像处理模型,在ImageNet-21k数据集上预训练,并在ImageNet-1k上微调。模型采用了先进的数据增强和正则化技术,适用于图像分类和特征提取任务。它包含3.04亿参数,处理224x224尺寸的输入图像。通过TIMM库,用户可以方便地使用该模型进行图像分类和特征嵌入提取。由于在大规模数据集上训练,该模型展现出卓越的图像理解能力。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号