Project Icon

vit_tiny_patch16_224.augreg_in21k

增强与正则化的ViT图像分类模型

这是一个高效的Vision Transformer(ViT)图像分类模型,经过增强和正则化,在ImageNet-21k上进行了训练。由论文作者在JAX中开发,并由Ross Wightman移植到PyTorch。模型的类型包括图像分类和特征提取,参数量为9.7百万,1.1 GMACs,处理图像尺寸为224x224。项目中有图像分类和嵌入的代码示例,以及支持特定数据转换的功能,提升模型性能。该模型适用于高效图像识别应用,并提供开发者比较参考的方法。

项目介绍:vit_tiny_patch16_224.augreg_in21k

背景介绍

vit_tiny_patch16_224.augreg_in21k是一个用于图像分类的视觉Transformer(ViT)模型。最初,这个模型是由论文作者在JAX框架下并借助ImageNet-21k数据集进行训练的,并且在训练过程中使用了额外的数据增强和正则化技术。后来,该模型被转移到了PyTorch框架中,由Ross Wightman进行实现。

模型详情

模型应用

图像分类

在图像分类任务中,该模型可以通过PyTorch Image Models库(timm)轻松加载和应用。预训练模型可以用来分析输入图像,返回对应的类别概率。如下是一个基本使用例子:

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model('vit_tiny_patch16_224.augreg_in21k', pretrained=True)
model = model.eval()

# 获取模型特定的转换(如归一化,调整尺寸)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 将单个图片扩展成batch

top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5)

图像嵌入

除了图像分类,该模型还可以用于生成图像嵌入,这通常用于计算机视觉任务中的特征提取。此操作通过移除模型的分类层(nn.Linear),可以直接得到图像的特征向量。

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen('https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'))

model = timm.create_model('vit_tiny_patch16_224.augreg_in21k', pretrained=True, num_classes=0)  # 移除分类层
model = model.eval()

# 获取模型特定的转换(如归一化,调整尺寸)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # 输出为(batch_size, num_features)形状的tensor

# 或者使用如下等效方法(无需设置num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))  # 输出为未聚合的tensor

output = model.forward_head(output, pre_logits=True)  # 输出为(1, num_features)形状的tensor

性能比较

可以在timm模型结果页中探索该模型的详细数据集性能及运行时间指标。

引用信息

若需要在研究中引用此模型或相关技术文献,请参考以下参考文献:

@article{steiner2021augreg,
  title={How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers},
  author={Steiner, Andreas and Kolesnikov, Alexander and and Zhai, Xiaohua and Wightman, Ross and Uszkoreit, Jakob and Beyer, Lucas},
  journal={arXiv preprint arXiv:2106.10270},
  year={2021}
}
@article{dosovitskiy2020vit,
  title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
  author={Dosovitskiy, Alexey and Beyer, Lucas and Kolesnikov, Alexander and Weissenborn, Dirk and Zhai, Xiaohua and Unterthiner, Thomas and  Dehghani, Mostafa and Minderer, Matthias and Heigold, Georg and Gelly, Sylvain and Uszkoreit, Jakob and Houlsby, Neil},
  journal={ICLR},
  year={2021}
}
@misc{rw2019timm,
  author = {Ross Wightman},
  title = {PyTorch Image Models},
  year = {2019},
  publisher = {GitHub},
  journal = {GitHub repository},
  doi = {10.5281/zenodo.4414861},
  howpublished = {\url{https://github.com/huggingface/pytorch-image-models}}
}
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号