Project Icon

xcit_nano_12_p8_224.fb_in1k

基于跨协方差转换器的轻量级图像分类模型

xcit_nano_12_p8_224.fb_in1k采用跨协方差图像转换器(XCiT)架构,是一个参数量为3.0M的轻量级图像分类模型。模型在ImageNet-1k数据集上完成预训练,支持224x224尺寸的图像输入,可应用于图像分类和特征提取。模型通过跨协方差注意力机制降低计算复杂度,适合实际部署应用。

mobilenetv3_small_100.lamb_in1k - MobileNetV3小型模型:轻量级移动设备图像分类方案
GithubHuggingfaceImageNet-1kMobileNet-v3timm图像分类开源项目模型特征提取
MobileNetV3小型模型是一款基于timm库在ImageNet-1k数据集上训练的轻量级图像分类模型。它采用LAMB优化器和EMA权重平均技术,具有2.5M参数和0.1 GMACs的低计算量。该模型支持224x224像素输入,可用于图像分类、特征提取和嵌入生成,适合在移动设备上部署高效的视觉识别应用。
vit_base_patch8_224.augreg2_in21k_ft_in1k - 基于Vision Transformer的ImageNet预训练图像分类模型
GithubHuggingfaceImageNetVision Transformertimm图像分类开源项目模型神经网络
vit_base_patch8_224.augreg2_in21k_ft_in1k是一个基于Vision Transformer架构的图像分类模型。该模型在ImageNet-21k上预训练,并在ImageNet-1k上微调,采用了增强的数据增强和正则化技术。模型包含8665万个参数,支持224x224像素的输入图像,可用于图像分类和特征提取。通过timm库,用户可以便捷地加载和使用该模型进行推理或继续训练。
convnext_small.fb_in22k - 支持多任务图像处理的预训练模型
ConvNeXtGithubHuggingfaceImageNettimm图像分类开源项目模型特征提取
ConvNeXt是一个经过ImageNet-22k预训练的图像分类模型,具备66.3M参数和8.7 GMACs。本文介绍其关键特性及在图像特征提取中的应用,旨在帮助专业用户理解和有效利用该模型进行视觉任务。
convnextv2_large.fcmae_ft_in22k_in1k - ConvNeXt-V2图像分类模型结合FCMAE预训练架构
ConvNeXt-V2GithubHuggingfaceImageNet图像分类开源项目模型模型比较深度学习
ConvNeXt-V2是一个大型图像分类模型,通过FCMAE框架预训练并在ImageNet数据集上微调。模型包含1.98亿参数,Top1准确率达87.26%,可用于图像分类、特征提取和嵌入等计算机视觉任务。其224x224的标准训练分辨率和多功能性使其成为视觉处理的实用选择。
deit_small_patch16_224.fb_in1k - DeiT架构图像分类模型 基于ImageNet-1k训练的高效Transformer
DeiTGithubHuggingface图像分类开源项目模型深度学习神经网络计算机视觉
DeiT小型模型是一种基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用注意力蒸馏技术,拥有2210万参数,适用于224x224像素图像输入。除图像分类外,它还可用于特征提取。模型通过timm库提供预训练权重,便于加载和推理。其数据效率和蒸馏技术使其在计算机视觉领域表现出色。
res2net50_14w_8s.in1k - Res2Net架构的多尺度骨干网络实现高效图像分类
GithubHuggingfaceImageNetRes2Nettimm图像分类开源项目模型深度学习模型
res2net50_14w_8s.in1k是基于Res2Net架构的图像分类模型,在ImageNet-1k数据集上训练。该模型采用多尺度ResNet结构,具有2510万参数,计算复杂度为4.2 GMACs。除图像分类外,还可作为特征提取器应用于其他计算机视觉任务。模型接受224x224像素的输入图像,并提供API支持图像分类、特征图提取和图像嵌入等功能。其高效的多尺度结构使其在保持准确性的同时降低了计算成本。
convnextv2_base.fcmae_ft_in22k_in1k - 多功能图像分类与特征提取模型
ConvNeXt-V2GithubHuggingfaceImageNettimm图像分类开源项目模型预训练模型
ConvNeXt-V2是一款先进的图像分类模型,通过全卷积掩码自编码器框架(FCMAE)预训练,并在ImageNet-22k和ImageNet-1k数据集上微调。除图像分类外,该模型还可用于特征图提取和图像嵌入。拥有8870万参数,ConvNeXt-V2在ImageNet-1k验证集上实现86.74%的Top-1准确率。凭借在多项基准测试中的卓越表现,ConvNeXt-V2成为各类计算机视觉任务的优秀选择。
deit_base_patch16_224.fb_in1k - 基于Transformer架构的DeiT图像分类模型
DeiTGithubHuggingfaceImageNet-1k图像分类开源项目模型深度学习神经网络
deit_base_patch16_224.fb_in1k是一款基于Transformer架构的图像分类模型,在ImageNet-1k数据集上训练。该模型拥有8660万参数,支持224x224像素图像处理,可用于图像分类和嵌入向量生成。通过数据高效训练方法和注意力蒸馏技术,该模型在减少大规模数据依赖的同时保持了高性能。研究人员和开发者可以利用timm库轻松应用此模型进行推理或特征提取。
convnextv2_huge.fcmae_ft_in22k_in1k_384 - 高级卷积网络用于图像分类与特征提取
ConvNeXt-V2GithubHuggingfaceImageNet-1k图像分类开源项目模型特征骨干预训练模型
ConvNeXt-V2是一种先进的卷积网络模型,专为图像分类与特征提取而设计。此模型通过全卷积掩码自编码器进行预训练,并在ImageNet-22k和ImageNet-1k上进行微调。具备660.3M参数和338.0 GMACs的计算成本,专为384x384大小的图像设计,确保高效处理与高精度结果。其在主流图像分类任务中的表现卓越,达到88.668的Top-1准确率和98.738的Top-5准确率,其框架优化适配多种计算场景。
resnet18.tv_in1k - 精简高效的ResNet18图像分类模型
GithubHuggingfaceResNet图像分类开源项目模型模型架构深度学习神经网络
resnet18.tv_in1k是一个基于ResNet-B架构的图像分类模型,采用ReLU激活函数和7x7卷积池化层。模型参数量为11.7M,运算量为1.8 GMACs,兼具轻量和高效。支持图像分类、特征图提取和图像嵌入,可处理224x224尺寸图像。该模型使用ImageNet-1k数据集训练,是torchvision的原始权重模型,适用于需要平衡性能和资源的应用场景。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

稿定AI

稿定设计 是一个多功能的在线设计和创意平台,提供广泛的设计工具和资源,以满足不同用户的需求。从专业的图形设计师到普通用户,无论是进行图片处理、智能抠图、H5页面制作还是视频剪辑,稿定设计都能提供简单、高效的解决方案。该平台以其用户友好的界面和强大的功能集合,帮助用户轻松实现创意设计。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号