Project Icon

xcit_small_12_p16_224.fb_in1k

跨协方差图像Transformer的高效视觉分类与特征提取模型

XCiT (Cross-Covariance Image Transformer)是Facebook Research开发的视觉分类模型,采用创新的跨协方差注意力机制。模型在ImageNet-1k数据集预训练,包含2630万参数,处理224x224图像输入。通过优化计算效率,该模型在图像分类和特征提取任务中展现出稳定性能。

inceptionnext - 结合Inception和ConvNeXt优势的高效图像识别模型
ConvNeXtGithubInceptionNeXt卷积神经网络图像分类开源项目深度学习
InceptionNeXt是一种创新的图像识别模型,融合了Inception的设计理念和ConvNeXt的架构。通过分解大型深度卷积核,该模型在速度和准确率方面取得了平衡,达到了ResNet-50的速度和ConvNeXt-T的精度。在ImageNet数据集上,InceptionNeXt展现出卓越性能,推动了计算机视觉领域的发展。研究团队提供了多种规模的预训练模型,适用于不同的应用场景。
TF-ICON - 利用Text-driven Diffusion模型实现跨域图像无训练组合的框架
GithubICCV 2023TF-ICON开源项目扩散模型无训练跨域图像合成
TF-ICON是一个利用Text-driven Diffusion模型实现跨域图像无训练组合的框架。相比需要实例化优化或微调预训练模型的方法,TF-ICON无需额外训练或优化,就可无缝集成用户提供的对象,还使用了特别提示来帮助模型准确还原真实图像。实验表明,该方法在多个数据集(如CelebA-HQ、COCO和ImageNet)上的表现优于现有技术。
vit-pytorch - 通过PyTorch实现多种视觉Transformer变体
GithubPytorchVision Transformer卷积神经网络图像分类开源项目深度学习
本项目展示了如何在PyTorch中实现和使用视觉Transformer(ViT)模型,包括Simple ViT、NaViT、Distillation、Deep ViT等多种变体。利用基于Transformer架构的简单编码器,本项目在视觉分类任务中达到了先进水平。用户可以通过pip进行安装,并参考提供的代码示例进行模型加载和预测。项目还支持高级功能如知识蒸馏、变分图像尺寸训练和深度模型优化,适用于多种视觉任务场景。
ViTamin - 推动计算机视觉进入新时代的可扩展视觉语言模型
GithubViTamin图像处理开源项目深度学习视觉语言模型计算机视觉
ViTamin是一系列可扩展的视觉语言模型,在图像分类、开放词汇检测和分割等任务上取得突破。以436M参数量在DataComp-1B数据集训练,实现82.9%的ImageNet零样本准确率。在7个开放词汇分割基准测试中创新纪录,并提升大型多模态模型能力。获timm和OpenCLIP官方支持,提供简单接口。ViTamin为计算机视觉领域带来新的可能性。
fast-DiT - 改进PyTorch实现的可扩展扩散模型转换器
DiTGithubPyTorchTransformer图像生成开源项目扩散模型
fast-DiT 项目提供了扩散模型转换器(DiT)的改进 PyTorch 实现。该项目包含预训练的类条件 DiT 模型、Hugging Face Space 和 Colab 笔记本,以及优化的训练脚本。通过采用梯度检查点、混合精度训练和 VAE 特征预提取等技术,显著提升了训练速度和内存效率。这一实现为研究人员和开发者提供了探索和应用扩散模型的有力工具。
SiT - 可扩展插值变换器 融合流模型和扩散模型的图像生成新方法
GithubSiT图像生成开源项目机器学习深度学习生成模型
SiT项目开发了可扩展插值变换器,这是一种基于扩散变换器的生成模型。通过灵活连接分布,SiT实现了对动态传输生成模型的模块化研究。在条件ImageNet 256x256基准测试中,SiT以相同的骨架和参数超越了DiT,并通过优化扩散系数获得了2.06的FID-50K分数。项目提供PyTorch实现、预训练模型和训练脚本,推动了图像生成技术的进步。
Vision-RWKV - 基于RWKV架构的高效视觉感知模型
GithubVision-RWKV图像处理开源项目深度学习神经网络计算机视觉
Vision-RWKV是一种基于RWKV架构的视觉感知模型。该模型可高效处理高分辨率图像,具有全局感受野,并通过大规模数据集预训练实现良好扩展性。在图像分类任务中,Vision-RWKV性能超越ViT模型;在密集预测任务中,它以更低计算量和更快速度胜过基于窗口的ViT,并与全局注意力ViT相当。Vision-RWKV展现出成为多种视觉任务中ViT替代方案的潜力。
PixArt-alpha - 高效训练的Transformer扩散模型实现逼真文本到图像生成
GithubPixArt-αTransformer开源项目扩散模型文本生成图像高效训练
PixArt-α是一个基于Transformer的文本到图像扩散模型,其生成图像质量可与Imagen、SDXL等最先进的图像生成器相媲美。该模型的训练速度显著超过现有大规模模型,仅需Stable Diffusion v1.5训练时间的10.8%。通过采用训练策略分解、高效Transformer结构和高信息量数据等创新设计,PixArt-α在大幅降低训练成本的同时,保证了优秀的图像生成质量、艺术性和语义控制能力。
tensorflow-image-models - 将PyTorch图像模型移植到TensorFlow的预训练模型库
GithubTensorFlow图像模型开源项目机器学习深度学习预训练权重
tensorflow-image-models是一个将PyTorch图像模型移植到TensorFlow的开源项目。它提供了多种预训练模型,包括ViT、DeiT、ResNet等,可用于图像分类和分割。该项目为开发者提供了简单的API来创建、预处理和保存/加载模型,并支持调整类别数量以适应不同任务。通过这个模型库,研究人员和开发者可以更方便地在TensorFlow中使用先进的图像模型。
MIMDet - 掩码图像建模应用于目标检测的开源项目
GithubMIMDet卷积神经网络实例分割开源项目物体检测视觉变换器
MIMDet是一个利用掩码图像建模技术的开源项目,能够提升预训练的Vanilla Vision Transformer在目标检测中的表现。此框架采用混合架构,用随机初始化的卷积体系取代预训练的大核Patchify体系,实现多尺度表示无需上采样。在COCO数据集上的表现亮眼,使用ViT-Base和Mask R-CNN模型时,分别达到51.7的框AP和46.2的掩码AP;使用ViT-L模型时,成绩分别是54.3的框AP和48.2的掩码AP。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号