Project Icon

mdeberta-v3-base-squad2

基于DeBERTa V3架构的多语言问答模型

这是一个支持100多种语言的问答模型,基于DeBERTa V3架构开发。模型在SQuAD2.0数据集上经过微调,F1评分达到84.01%,可实现高质量的文本抽取式问答。采用ELECTRA预训练方法和优化的嵌入技术,适用于多语言自然语言处理任务。

mDeBERTa-v3-base-mnli-xnli - 支持100种语言的零样本分类和自然语言推理模型
GithubHuggingfaceXNLI数据集mDeBERTa-v3多语言模型开源项目模型自然语言推理零样本分类
mDeBERTa-v3-base-mnli-xnli是一个支持100种语言的自然语言推理模型。它在XNLI和MNLI数据集上进行微调,在15种语言的XNLI测试集上达到80.8%的平均准确率。该模型可用于零样本分类和NLI任务,为多语言NLP应用提供了有效解决方案。模型基于Microsoft的mDeBERTa-v3架构,在CC100多语言数据集上预训练。
roberta-base-chinese-extractive-qa - 中文提取式问答模型简介与使用指南
GithubHuggingfaceRoBERTa开源项目提问回答普希金模型腾讯云训练数据
该项目提供了一种中文提取式问答的完整方案,通过UER-py和TencentPretrain进行模型微调,支持大规模参数和多模态预训练拓展。模型可通过UER-py或HuggingFace获取,便于快速部署问答管道。训练数据包括cmrc2018、webqa和laisi,旨在提高模型的语义理解能力,并在腾讯云上进行三轮训练以优化性能。项目还提供了详细指导,便于导入和转换模型格式,从而提高问答系统的精准性。
t5-small-squad-qag - 基于t5-small的文本智能问答生成系统
GithubHuggingfaceSQuAD数据集T5模型lmqg开源项目模型自然语言处理问答生成
t5-small-squad-qag是一个经过优化的英文智能问答系统,通过lmqg/qag_squad数据集训练,BERTScore评分达92.76%。系统支持lmqg和transformers库集成,可实现文本分析和问答对自动生成,主要应用于教育和内容创作领域。
deberta-large-mnli - 基于DeBERTa架构的MNLI微调大型语言模型
BERTDeBERTaGithubHuggingface开源项目模型模型性能注意力机制自然语言处理
DeBERTa-large-mnli是一个针对MNLI任务微调的大型语言模型,基于DeBERTa架构开发。该模型采用解耦注意力机制和增强型掩码解码器,在多数自然语言理解任务中表现优于BERT和RoBERTa。在SQuAD和GLUE等基准测试中,DeBERTa-large-mnli展现出优异性能。这个模型适用于各种自然语言理解应用,可为NLP研究提供有力支持。
DeBERTa-v3-base-mnli-fever-anli - 基于DeBERTa-v3的多数据集训练自然语言推理模型
DeBERTaGithubHuggingface多任务学习开源项目数据集模型模型评估自然语言推理
该模型采用DeBERTa-v3作为基础架构,通过在MNLI、FEVER和ANLI三个主要自然语言推理数据集上训练而成。在ANLI测试集R1上达到71.2%的准确率,MNLI验证集上达到90.3%的准确率,展现了优秀的推理能力。模型可应用于零样本文本分类等多种NLP任务,为研究人员和开发者提供了实用的工具。
roberta-base-bne-finetuned-msmarco-qa-es-mnrl-mn - 西班牙语语义搜索和问答优化模型
GithubHuggingfacesentence-transformers句子相似度开源项目模型自然语言处理西班牙语语义搜索
该模型是基于roberta-base-bne进行微调,专为西班牙语问答场景优化。通过将句子和段落转换为768维的密集向量空间,适用于语义搜索和文本聚类等任务。使用MS-MARCO数据集的西班牙语翻译版进行训练,尤其适合处理西班牙语问题。输入文本超过512个词片段时会自动截断,旨在提供精确的问答性能。
minilm-uncased-squad2 - MiniLM抽取式问答模型在SQuAD 2.0数据集实现76分精确匹配
GithubHaystackHuggingfaceMiniLMSQuAD 2.0Transformers开源项目模型问答模型
MiniLM-L12-H384-uncased是一款专注于英文抽取式问答的开源模型。经SQuAD 2.0数据集训练后,模型可从文本中精确定位答案信息,并通过Haystack或Transformers框架便捷部署。目前在验证集评测中展现出优秀的问答性能,适合搭建生产环境的问答应用。
deberta-v3-base-tasksource-nli - DeBERTa-v3多任务学习模型用于零样本分类与推理
DeBERTa-v3-baseGithubHuggingfacetasksource多任务学习开源项目模型自然语言推理零样本分类
该模型基于DeBERTa-v3-base架构,通过多任务学习在600多个任务上微调而来。模型在零样本验证中表现优异,适用于零样本分类、自然语言推理等多种任务。它支持灵活的分类和推理pipeline,并可通过tasksource-adapters轻松访问数百个预训练任务。在IBM模型回收评估中排名第一,显示出广泛的应用前景。
persian_xlm_roberta_large - XLM-RoBERTa模型提升波斯语问答表现
GithubHuggingfacePQuADXLM-RoBERTA多语言开源项目性能模型问题回答
波斯语问答模型基于XLM-RoBERTa优化,提升了PQuAD数据集上的匹配精度,详细介绍了训练参数和PyTorch使用方法。
deberta-v3-large-tasksource-nli - 自然语言推理的多任务学习模型,提升零样本分类性能
DeBERTa-v3-largeGithubHuggingfaceTransformer多任务学习开源项目模型自然语言推理零样本分类
DeBERTa-v3-large采用多任务学习,涵盖600多项任务,提升零样本分类性能。模型在多个数据集进行了训练,适用于自然语言推理与分类。其共享的编码器和特定CLS嵌入在多种分类任务中展现出色表现,在未调优状态下于WNLI和MNLI中分别达到了77%和90%的准确率,适合科研与实际应用。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号