Project Icon

xlm-roberta-large-wnut2017

XLM-RoBERTa模型在多语言命名实体识别中的应用

xlm-roberta-large-wnut2017是一个微调用于多语言命名实体识别的XLM-RoBERTa模型,具备多语言处理能力。使用者可以轻松地调用该模型以增强语言信息提取的效率。详情请参考TNER官方库。

roberta-large-NER - XLM-RoBERTa大型模型用于多语言命名实体识别
GithubHuggingfaceXLM-RoBERTa人工智能命名实体识别多语言模型开源项目模型自然语言处理
XLM-RoBERTa-large模型基础上微调的多语言命名实体识别工具,支持100多种语言。在英语CoNLL-2003数据集上训练,可用于命名实体识别和词性标注等标记分类任务。该模型由Facebook AI研究团队开发,具有强大的跨语言能力,但存在潜在偏见和局限性。作为自然语言处理的重要工具,它为多语言文本分析提供了有力支持。
roberta-large-wnut2017 - Roberta-large模型在WNUT2017数据集上的实体识别能力
GithubHuggingfacetner/roberta-large-wnut2017召回率命名实体识别开源项目模型精度超参数搜索
Roberta-large在WNUT2017数据集上进行微调,F1得分为0.5375。该模型通过T-NER优化,适用于跨领域和多语言的实体识别任务,支持识别人、组织和地点等多种实体。模型通过简易代码实现实体识别,提升文本解析能力。
tner-xlm-roberta-base-ontonotes5 - XLM-RoBERTa多语言命名实体识别模型实现高精度实体标注
GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目标记分类模型深度学习自然语言处理
该命名实体识别模型基于XLM-RoBERTa预训练模型微调,专用于令牌分类任务。模型支持识别组织、人名、地点等多种实体类型,采用12层注意力头结构,词汇表包含250002个词。项目提供完整训练数据集和评估指标,并通过tner库实现简单集成。其开源特性和易用API使其成为构建高性能多语言NER应用的理想选择。
xlm-roberta-large-finetuned-conll03-english - XLM-RoBERTa基于命名实体识别模型支持百余种语言
GithubHuggingfaceXLM-RoBERTa命名实体识别多语言模型开源项目模型自然语言处理迁移学习
xlm-roberta-large-finetuned-conll03-english是基于XLM-RoBERTa的多语言命名实体识别模型,预训练涵盖百余种语言,并经英语CoNLL-2003数据集微调。适用于命名实体识别、词性标注等标记分类任务,具备出色的多语言处理能力。模型由Facebook AI团队开发,在Hugging Face平台开放使用。使用时需注意潜在偏见和局限性。
xlm-roberta-large-ner-hrl - 十种多语言命名实体识别模型,覆盖高资源语言
GithubHuggingfacexlm-roberta-large-ner-hrl命名实体识别多语言开源项目数据集模型模型训练
此模型是基于xlm-roberta-large微调的命名实体识别模型,支持十大高资源语言:阿拉伯语、德语、英语、西班牙语、法语、意大利语、拉脱维亚语、荷兰语、葡萄牙语和中文。具备识别地点、组织和人物三类实体的功能。通过Transformers库的pipeline,可便捷地应用于NER任务。训练数据来自特定时间段的新闻文章,虽然适用于多种场景,但在不同领域的推广性有限。
xlm-roberta-large-ner-spanish - 基于XLM-Roberta-large的高性能西班牙语命名实体识别模型
CoNLL-2002GithubHuggingfaceXLM-RoBERTa命名实体识别开源项目模型自然语言处理西班牙语
xlm-roberta-large-ner-spanish是一个基于XLM-Roberta-large模型微调的西班牙语命名实体识别(NER)模型。该模型在CoNLL-2002数据集的西班牙语部分上训练,在测试集上实现了89.17的F1分数,展现出优秀的性能。此模型能够有效识别文本中的人名、地名、组织机构等命名实体,为西班牙语自然语言处理任务提供了有力工具。
roberta-large-ner-english - 基于RoBERTa的英语命名实体识别模型 擅长处理非正式文本
GithubHuggingFaceHuggingfaceNERroberta-large实体识别开源项目模型自然语言处理
roberta-large-ner-english是一个基于RoBERTa大型模型微调的英语命名实体识别模型。它在CoNLL-2003数据集上训练,在验证集上实现了97.53%的F1分数。该模型在处理电子邮件、聊天等非正式文本时表现优异,尤其擅长识别不以大写字母开头的实体。相比SpaCy,它在非正式文本上的表现更出色。模型可识别人名、组织、地点和杂项实体,并可通过HuggingFace库轻松集成到NLP项目中。
xlm-roberta-large - 大规模多语言预训练模型
GithubHuggingfaceXLM-RoBERTa多语言模型开源项目机器学习模型自然语言处理预训练模型
XLM-RoBERTa是一个在2.5TB多语言数据上预训练的大型语言模型,覆盖100种语言。该模型采用掩码语言建模技术,能够生成双向文本表示。XLM-RoBERTa主要应用于序列分类、标记分类和问答等下游任务的微调。凭借其在多语言和跨语言任务中的出色表现,XLM-RoBERTa为自然语言处理领域提供了坚实的基础。
roberta-large-mnli - RoBERTa大型模型微调的零样本分类模型
GithubHuggingfaceRoBERTa开源项目文本分类机器学习模型自然语言处理语言模型
roberta-large-mnli是基于RoBERTa大型模型在MNLI语料库上微调的自然语言推理模型。该模型在零样本分类任务中表现优异,适用于句对分类和序列分类。它采用transformer架构,通过掩码语言建模进行预训练,在GLUE和XNLI基准测试中成绩卓越。然而,用户需注意模型可能存在偏见,不适合生成事实性内容或用于可能造成负面影响的场景。
xlm-roberta-large-finetuned-conll03-german - 基于XLM-RoBERTa的大型多语言模型优化德国文本的命名实体识别
GithubHuggingfaceXLM-RoBERTa命名实体识别多语言模型开源项目模型模型训练自然语言处理
该项目展示了一种基于大规模多语言数据训练的XLM-RoBERTa模型,专注于德语文本的命名实体识别和词性标注,能够高效解析德语文本,并通过内置管道进行自然语言理解任务的方便集成。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号