Project Icon

LAION

开源机器学习资源与数据集提供平台

LAION作为非营利组织,提供开放机器学习资源,包括大规模数据集、工具和模型。平台主要产品有LAION-400M、LAION-5B图像文本对数据集,CLIP视觉转换器模型和LAION-Aesthetics美学筛选子集。LAION致力于推动开放式机器学习研究,鼓励资源重复利用,支持环保理念和公共教育发展。

audio-dataset - LAION音频数据集收集与处理开源计划
CLAPGithubLAIONwebdataset开源项目音频数据集
LAION发起的Audio Dataset Project致力于收集和处理大规模音频-文本对数据集。项目团队由Mila和UCSD的研究人员及全球贡献者组成,专注于数据收集、标准化处理和webdataset格式存储。该项目为CLAP等模型训练提供数据支持,并设有完善的贡献指南和进度跟踪系统,欢迎更多贡献者参与。
CLIP-ViT-B-32-xlm-roberta-base-laion5B-s13B-b90k - 具备零样本学习与多语言支持的图像模型
CLIP ViT-B/32GithubHuggingfaceLAION-5B图像分类多语言性能开源项目模型零样本学习
该模型基于LAION-5B数据集和OpenCLIP技术,能够进行零样本图像分类和图像-文本检索。通过结合CLIP ViT-B/32和xlm roberta,这一模型在各种图像任务中显示出较高性能。同时,其多语言能力经验证,可提升imagenet1k等多语言数据集上的表现,尤其在意大利语和日语测试中效果显著。依托于高效的OpenCLIP训练,模型在mscooco和flickr30k数据集上有较大性能提升,是图像生成与分类的可靠选择。
CLIP-ViT-g-14-laion2B-s12B-b42K - 用于零样本图像分类的先进研究工具
CLIP ViT-g/14GithubHuggingfaceLAION-5B图像分类多模态模型开源项目模型零样本学习
该模型专为研究社区而设计,采用LAION-5B数据集中的英语子集进行训练。它帮助研究人员探索零样本与任意图像分类的可能性,适用于跨学科的研究。该模型仅推荐用于研究目的,不适合用于商业化或未经测试的环境,并强调确保其安全和适当使用。
CLIP-ViT-bigG-14-laion2B-39B-b160k - CLIP-ViT-bigG-14模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-2BViT-bigG/14开源模型开源项目模型零样本图像分类
CLIP-ViT-bigG-14-laion2B-39B-b160k是基于LAION-2B数据集训练的大规模视觉语言模型。该模型在零样本图像分类、图像文本检索等任务中表现出色,在ImageNet-1k测试中实现80.1%的零样本top-1准确率。模型采用ViT-bigG/14架构,由stability.ai提供计算资源支持。虽然适合研究人员探索零样本分类和跨模态学习,但目前不建议直接应用于商业场景。
CLIP-convnext_xxlarge-laion2B-s34B-b82K-augreg - 基于LAION-2B数据集的卷积神经网络达到79%零样本分类准确率
CLIPConvNextGithubHuggingface图像分类开源项目机器学习模型神经网络
CLIP ConvNeXt-XXLarge是一个在LAION-2B数据集上训练的大规模视觉语言模型,总参数量12亿,图像分辨率256x256。模型采用ConvNeXt-XXLarge图像结构和ViT-H-14规模的文本编码器,在ImageNet零样本分类上达到79%准确率。主要应用于图像分类、检索等研究任务。
CLIP-ViT-L-14-laion2B-s32B-b82K - CLIP-ViT-L-14模型实现高效零样本图像分类和检索
CLIPGithubHuggingfaceLAION-2B图像分类开源项目模型视觉语言模型零样本学习
CLIP-ViT-L-14-laion2B-s32B-b82K模型基于LAION-2B英语数据集训练,在ImageNet-1k上实现75.3%的零样本top-1准确率。它支持零样本图像分类和图文检索等任务,是研究零样本图像分类的重要工具。该模型在JUWELS Booster超级计算机上完成训练,为计算机视觉研究提供了新的可能性。
CLIP-ViT-B-32-laion2B-s34B-b79K - 基于LAION-2B数据集训练的CLIP ViT-B/32零样本图像识别模型
CLIPGithubHuggingfaceLAION-2B图像分类多模态模型开源项目模型零样本学习
CLIP-ViT-B-32-laion2B-s34B-b79K是一个基于LAION-2B英文数据集训练的CLIP ViT-B/32模型,在ImageNet-1k上实现66.6%的零样本top-1准确率。该模型适用于零样本图像分类、图像文本检索等任务,由Stability AI提供算力支持,采用OpenCLIP框架训练。此模型为研究人员提供了探索零样本任意图像分类的有力工具。
convnext_large_mlp.clip_laion2b_soup_ft_in12k_in1k_320 - ConvNeXt大型图像分类模型 LAION-2B预训练 ImageNet微调
ConvNeXtGithubHuggingfaceImageNetLAION-2Btimm图像分类开源项目模型
ConvNeXt大型图像分类模型采用CLIP方法在LAION-2B数据集上预训练,并在ImageNet-12k和ImageNet-1k上微调。模型包含2亿参数,320x320输入下top-1准确率达87.968%。支持图像分类、特征提取和嵌入等任务,可应用于多种计算机视觉场景。
CLIP-ViT-H-14-laion2B-s32B-b79K - 基于LAION-2B数据集的多功能视觉-语言模型
CLIPGithubHuggingfacezero-shot图像分类开源项目数据集机器学习模型
CLIP-ViT-H-14-laion2B-s32B-b79K是基于LAION-2B数据集训练的视觉-语言模型。该模型在ImageNet-1k上达到78.0%的零样本Top-1准确率,适用于图像分类、图像文本检索等任务。此外,它还支持图像分类微调、线性探测和图像生成指导等下游应用。研究人员可借助该模型探索零样本图像分类技术,并评估其潜在影响。
CLIP-ViT-H-14-frozen-xlm-roberta-large-laion5B-s13B-b90k - CLIP架构多语言视觉语言模型实现高效零样本图像分类与检索
CLIPGithubHuggingfaceLAION-5B图像分类多语言模型开源项目模型零样本学习
这是一个基于CLIP架构的多语言视觉语言模型,在LAION-5B数据集上训练。模型结合了冻结的ViT-H/14视觉结构和XLM-RoBERTa大型文本模型,在多语言零样本图像分类和检索任务中表现优异。适用于零样本图像分类、图文检索等应用,也支持下游任务微调。该模型在英语及其他语言中均展现出强大性能,为跨语言视觉AI应用提供了有力支持。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号