Project Icon

franz-go

Go语言实现的完整Apache Kafka客户端库

franz-go是Go语言编写的Apache Kafka客户端库,支持Kafka v0.8.0及以后版本的全部功能。提供事务处理、正则主题消费、先进分区策略等特性,并支持精确一次语义、幂等和事务性生产者。franz-go设计高效,提供直观API,同时保持与Kafka的原生交互方式。该库优化了性能,减少了不必要的goroutine使用,适合构建高性能Kafka应用。

franz-go - A complete Apache Kafka client written in Go

GoDev GitHub Discord Chat

Franz-go is an all-encompassing Apache Kafka client fully written Go. This library aims to provide every Kafka feature from Apache Kafka v0.8.0 onward. It has support for transactions, regex topic consuming, the latest partitioning strategies, data loss detection, closest replica fetching, and more. If a client KIP exists, this library aims to support it.

This library attempts to provide an intuitive API while interacting with Kafka the way Kafka expects (timeouts, etc.).

Features

  • Feature complete client (Kafka >= 0.8.0 through v3.4+)
  • Full Exactly-Once-Semantics (EOS)
  • Idempotent & transactional producers
  • Simple (legacy) consumer
  • Group consumers with eager (roundrobin, range, sticky) and cooperative (cooperative-sticky) balancers
  • All compression types supported: gzip, snappy, lz4, zstd
  • SSL/TLS provided through custom dialer options
  • All SASL mechanisms supported (GSSAPI/Kerberos, PLAIN, SCRAM, and OAUTHBEARER)
  • Low-level admin functionality supported through a simple Request function
  • High-level admin package with many helper types to make cluster administration easy.
  • Utilizes modern & idiomatic Go (support for contexts, variadic configuration options, ...)
  • Highly performant by avoiding channels and goroutines where not necessary
  • Written in pure Go (no wrapper lib for a C library or other bindings)
  • Ability to add detailed log messages or metrics using hooks
  • Plug-in metrics support for prometheus, zap, etc.
  • An admin client with many helper functions for easy admin tasks
  • A schema registry client and convenience Serde type for encoding and decoding

Works with any Kafka compatible brokers:

  • Redpanda: the fastest and most efficient Kafka compatible event streaming platform
  • Kafka: the original Java project
  • Confluent Platform
  • Microsoft Event Hubs
    • Event Hubs does not support producing with compression; be sure to use kgo.ProducerBatchCompression(kgo.NoCompression).
  • Amazon MSK

Install

This repo contains multiple tags to allow separate features to be developed and released independently. The main client is in franz-go. Plugins are released from plugin/{plugin}. The raw-protocol package is released from pkg/kmsg, and the admin package is released from pkg/kadm.

The main client is located in the package github.com/twmb/franz-go/pkg/kgo, while the root of the project is at github.com/twmb/franz-go. There are a few extra packages within the project, as well as a few sub-modules. To use the main kgo package,

go get github.com/twmb/franz-go

To use a plugin,

go get github.com/twmb/franz-go/plugin/kzap

To use kadm,

go get github.com/twmb/franz-go/pkg/kadm

As an example, your require section in go.mod may look like this:

require (
	github.com/twmb/franz-go v1.12.0
	github.com/twmb/franz-go/pkg/kmsg v1.4.0
)

Getting started

Here's a basic overview of producing and consuming:

seeds := []string{"localhost:9092"}
// One client can both produce and consume!
// Consuming can either be direct (no consumer group), or through a group. Below, we use a group.
cl, err := kgo.NewClient(
	kgo.SeedBrokers(seeds...),
	kgo.ConsumerGroup("my-group-identifier"),
	kgo.ConsumeTopics("foo"),
)
if err != nil {
	panic(err)
}
defer cl.Close()

ctx := context.Background()

// 1.) Producing a message
// All record production goes through Produce, and the callback can be used
// to allow for synchronous or asynchronous production.
var wg sync.WaitGroup
wg.Add(1)
record := &kgo.Record{Topic: "foo", Value: []byte("bar")}
cl.Produce(ctx, record, func(_ *kgo.Record, err error) {
	defer wg.Done()
	if err != nil {
		fmt.Printf("record had a produce error: %v\n", err)
	}

})
wg.Wait()

// Alternatively, ProduceSync exists to synchronously produce a batch of records.
if err := cl.ProduceSync(ctx, record).FirstErr(); err != nil {
	fmt.Printf("record had a produce error while synchronously producing: %v\n", err)
}

// 2.) Consuming messages from a topic
for {
	fetches := cl.PollFetches(ctx)
	if errs := fetches.Errors(); len(errs) > 0 {
		// All errors are retried internally when fetching, but non-retriable errors are
		// returned from polls so that users can notice and take action.
		panic(fmt.Sprint(errs))
	}

	// We can iterate through a record iterator...
	iter := fetches.RecordIter()
	for !iter.Done() {
		record := iter.Next()
		fmt.Println(string(record.Value), "from an iterator!")
	}

	// or a callback function.
	fetches.EachPartition(func(p kgo.FetchTopicPartition) {
		for _, record := range p.Records {
			fmt.Println(string(record.Value), "from range inside a callback!")
		}

		// We can even use a second callback!
		p.EachRecord(func(record *kgo.Record) {
			fmt.Println(string(record.Value), "from a second callback!")
		})
	})
}

This only shows producing and consuming in the most basic sense, and does not show the full list of options to customize how the client runs, nor does it show transactional producing / consuming. Check out the examples directory for more!

API reference documentation can be found on GoDev. Supplementary information can be found in the docs directory:

docs
├── admin requests — an overview of how to issue admin requests
├── metrics and logging — a small writeup on how to enable metrics & logging in franz-go, as well as a few thoughts on latency tracking
├── package layout — describes the packages in franz-go
├── producing and consuming — descriptions of producing & consuming & the guarantees
└── transactions — a description of transactions and the safety even in a pre-KIP-447 world

Who uses this?

In alphabetical order,

If you use this library and want on the list above, please either open a PR or comment on #142!

Version Pinning

By default, the client issues an ApiVersions request on connect to brokers and defaults to using the maximum supported version for requests that each broker supports. If you want to pin to an exact version, you can use the MaxVersions option.

Kafka 0.10.0 introduced the ApiVersions request; if you are working with brokers older than that, you must use the kversions package. Use the MaxVersions option for the client if you do so.

Metrics & logging

Note there exists plug-in packages that allow you to easily add prometheus metrics, go-metrics, zap logging, etc. to your client! See the plugin directory for more information! These plugins are provided under dedicated modules, e.g. github.com/twmb/franz-go/plugin/kprom@v1.0.0.

The franz-go client takes a neutral approach to metrics by providing hooks that you can use to plug in your own metrics.

All connections, disconnections, reads, writes, and throttles can be hooked into, as well as per-batch produce & consume metrics. If there is an aspect of the library that you wish you could have insight into, please open an issue and we can discuss adding another hook.

Hooks allow you to log in the event of specific errors, or to trace latencies, count bytes, etc., all with your favorite monitoring systems.

In addition to hooks, logging can be plugged in with a general Logger interface. A basic logger is provided if you just want to write to a given file in a simple format. All logs have a message and then key/value pairs of supplementary information. It is recommended to always use a logger and to use LogLevelInfo.

See this example for an expansive example of integrating with prometheus! Alternatively, see this example for how to use the plug-in prometheus package!

Benchmarks

This client is quite fast; it is the fastest and most cpu and memory efficient client in Go.

For 100 byte messages,

  • This client is 4x faster at producing than confluent-kafka-go, and up to 10x-20x faster (at the expense of more memory usage) at consuming.

  • This client is 2.5x faster at producing than sarama, and 1.5x faster at consuming.

  • This client is 2.4x faster at producing than segment's kafka-go, and anywhere from 2x to 6x faster at consuming.

To check benchmarks yourself, see the bench example. This example lets you produce or consume to a cluster and see the byte / record rate. The compare subdirectory shows comparison code.

Supported KIPs

Theoretically, this library supports every (non-Java-specific) client facing KIP. Any KIP that simply adds or modifies a protocol is supported by code generation.

KIPKafka releaseStatus
KIP-1 — Disallow acks > 10.8.3Supported & Enforced
KIP-4 — Request protocol changes0.9.0 through 0.10.1Supported
KIP-8 — Flush method on Producer0.8.3Supported
KIP-12 — SASL & SSL0.9.0Supported
KIP-13 — Throttling (on broker)0.9.0Supported
KIP-15 — Close with a timeout0.9.0Supported (via context)
KIP-19 — Request timeouts0.9.0Supported
KIP-22 — Custom partitioners0.9.0Supported
KIP-31 — Relative offsets in message sets0.10.0Supported
KIP-32 — Timestamps in message set v10.10.0Supported
KIP-35 — ApiVersion0.10.0Supported
KIP-40 — ListGroups and DescribeGroups0.9.0Supported
KIP-41 — max.poll.records0.10.0Supported (via PollRecords)
KIP-42 — Producer & consumer interceptors0.10.0Partial support (hooks)
KIP-43 — SASL PLAIN & handshake0.10.0Supported
KIP-48 — Delegation tokens1.1Supported
KIP-54 — Sticky partitioning0.11.0Supported
KIP-57 — Fix lz40.10.0Supported
KIP-62 — background heartbeats & improvements0.10.1Supported
KIP-70 — On{Assigned,Revoked}0.10.1Supported
KIP-74 — Fetch response size limits0.10.1Supported
KIP-78 — ClusterID in Metadata0.10.1Supported
KIP-79 — List offsets for times0.10.1Supported
KIP-81 — Bound fetch memory usageWIPSupported (through a combo of options)
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号