Project Icon

torch-imle

将离散优化算法融入深度学习的创新方法

torch-imle是一个PyTorch库,通过I-MLE梯度估计器将离散优化算法融入深度学习。它使用创新的采样和分布方法,实现了离散优化问题在深度学习中的应用,如最短路径学习。该库采用Perturb-and-MAP方法和新颖的噪声扰动来近似采样复杂分布,并提供替代经验分布。torch-imle通过梯度下降学习最优路径权重,为深度学习中的离散优化问题提供强大的解决方案。

torchdistill - 模块化深度学习知识蒸馏框架
GithubPyYAMLtorchdistill开源项目模型训练深度学习知识蒸馏
torchdistill是一款模块化的深度学习知识蒸馏框架,通过编辑yaml文件即可设计实验,无需编写Python代码。支持提取模型中间表示,方便进行可重复的深度学习研究。通过ForwardHookManager,无需修改模型接口即可提取数据。支持从PyTorch Hub导入模块,并包含多种范例代码及预训练模型,适用于图像分类、目标检测、语义分割和文本分类等任务。
ai-edge-torch - PyTorch模型转TensorFlow Lite的开源解决方案
AI Edge TorchGithubPyTorchTensorFlow Lite开源项目模型转换移动设备部署
ai-edge-torch是一个开源Python库,用于将PyTorch模型转换为TensorFlow Lite格式。它支持在Android、iOS和IoT设备上本地运行模型,提供广泛的CPU支持和初步的GPU、NPU支持。该项目还包含生成式API,用于优化大型语言模型在设备端的性能。ai-edge-torch与PyTorch紧密集成,为边缘AI开发提供了实用的工具。
reptile-pytorch - PyTorch实现的用于监督学习的OpenAI Reptile算法
GithubMiniImagenetOmniglotOpenAIPyTorchReptile开源项目
PyTorch实现的OpenAI Reptile算法,专注于监督学习,目前支持在Omniglot数据集上运行,具备K-shot N-way采样、训练监控和中断恢复功能。欢迎对项目的贡献和反馈,未来计划支持Mini-Imagenet数据集、提升Meta-batch大小、添加训练曲线和Shell脚本下载功能。
AgileRL - 革新强化学习的高效开发框架
AgileRLGithub开源项目强化学习机器学习超参数优化进化算法
AgileRL是一个创新的深度强化学习库,专注于提升强化学习的开发效率。通过引入RLOps概念,该库显著缩短了模型训练和超参数优化的时间。AgileRL采用进化超参数优化技术,自动找到最优超参数,减少了大量训练运行。它支持多种先进的可进化算法,包括单智能体、多智能体、离线学习和上下文多臂赌博机,并具备分布式训练能力。相比传统方法,AgileRL在超参数优化速度上实现了10倍的提升。
pytorch-dnc - PyTorch实现的差分神经计算机及相关模型库
DNCGithubSAMSDNC开源项目神经网络记忆增强
这个PyTorch库实现了差分神经计算机(DNC)、稀疏访问存储器(SAM)和稀疏差分神经计算机(SDNC)等模型。它提供灵活API用于构建和训练这些神经网络,支持多层控制器、共享内存等配置。库中还包含复制和加法等基准任务,以及内存可视化功能,有助于开发和评估基于外部存储的神经网络模型。
edm2 - 优化扩散模型训练动态的创新技术
EDM2GithubPyTorch图像生成开源项目扩散模型训练动态
EDM2项目开发了改进扩散模型训练动态的新方法。通过重新设计网络层来维持激活、权重和更新幅度的期望值,该方法显著提高了模型效果。在ImageNet-512图像合成中,EDM2使FID得分从2.41提升到1.81。项目还引入了训练后调整指数移动平均(EMA)参数的技术,可精确设置EMA长度,为模型优化开辟新途径。
DRLX - 强化学习框架优化扩散模型
DRLXGithubStable Diffusion分布式训练开源项目强化学习扩散模型
DRLX是一个基于强化学习的扩散模型分布式训练库。它与Hugging Face的Diffusers库集成,支持多GPU和多节点训练。DRLX兼容Stable Diffusion等模型,实现DDPO算法训练。该库采用即插即用设计,训练模型可直接用于原始管道。DRLX集成了美学评分奖励模型和PickAPic提示词生成功能,为扩散模型研究提供了全面的工具集。
InferLLM - 轻量化语言模型推理框架,兼容多种模型格式和设备
GithubInferLLMllama.cpp多模型兼容开源项目模型推理高效率
InferLLM 是一个高效简洁的语言模型推理框架,源于 llama.cpp 项目。主要特点包括结构简单、高性能、易于上手,并支持多模型格式。目前兼容 CPU 和 GPU,可优化 Arm、x86、CUDA 和 riscv-vector,并支持移动设备部署。InferLLM 引入了专有 KVstorage 类型以简化缓存和管理,适合多种应用场景。最新支持的模型包括 LLama-2-7B、ChatGLM、Alpaca 等。
stable-diffusion-pytorch - Stable Diffusion PyTorch实现,支持自定义参数
该项目提供简洁且易于修改的Stable Diffusion PyTorch实现,支持文本生成图像与图像生成图像的操作,允许自定义生成参数、调整指导规模和选择生成步数等多种功能。依赖PyTorch、Numpy和Pillow等库,适合需要高度控制与灵活性的深度学习项目。通过Colab可以快速开始使用,并且借鉴了多个知名开源库,是学习和实践的理想资源。
mim - OpenMMLab项目的统一管理和运行工具
GithubMIMOpenMMLab包管理命令行工具开源项目模型管理
MIM为OpenMMLab项目提供统一的管理接口,简化了包的安装卸载和模型库管理。它通过统一入口点简化了训练、测试和推理过程,并支持自定义项目构建和网格搜索,提高了开发效率和实验灵活性。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

白日梦AI

白日梦AI提供专注于AI视频生成的多样化功能,包括文生视频、动态画面和形象生成等,帮助用户快速上手,创造专业级内容。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

讯飞绘镜

讯飞绘镜是一个支持从创意到完整视频创作的智能平台,用户可以快速生成视频素材并创作独特的音乐视频和故事。平台提供多样化的主题和精选作品,帮助用户探索创意灵感。

Project Cover

讯飞文书

讯飞文书依托讯飞星火大模型,为文书写作者提供从素材筹备到稿件撰写及审稿的全程支持。通过录音智记和以稿写稿等功能,满足事务性工作的高频需求,帮助撰稿人节省精力,提高效率,优化工作与生活。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号