Project Icon

roberta-base-chinese-extractive-qa

中文提取式问答模型简介与使用指南

该项目提供了一种中文提取式问答的完整方案,通过UER-py和TencentPretrain进行模型微调,支持大规模参数和多模态预训练拓展。模型可通过UER-py或HuggingFace获取,便于快速部署问答管道。训练数据包括cmrc2018、webqa和laisi,旨在提高模型的语义理解能力,并在腾讯云上进行三轮训练以优化性能。项目还提供了详细指导,便于导入和转换模型格式,从而提高问答系统的精准性。

distilroberta-base - DistilRoBERTa:轻量高效的英语语言模型
DistilRoBERTaGithubHuggingface开源项目机器学习模型模型蒸馏自然语言处理语言模型
DistilRoBERTa-base是RoBERTa-base的精简版本,采用与DistilBERT相同的蒸馏技术。模型包含6层结构,768维向量和12个注意力头,总参数量为8200万,比原版减少33%。在保持相近性能的同时,处理速度提升一倍。主要应用于序列分类、标记分类和问答等下游任务的微调。该模型在英语处理上表现优异,但使用时需注意其可能存在的偏见和局限性。
xlm-roberta-longformer-base-4096 - 支持超长序列处理的多语言Transformer模型
GithubHuggingfaceWikiText-103XLM-R Longformer低资源语言开源项目模型长序列处理问答任务
该项目结合XLM-R与Longformer模型,提升了对多达4096个标记的处理能力,以提高低资源语言的处理效果。模型在WikiText-103语料库上进行预训练,适用于多语言问答任务。推荐使用NVIDIA Apex和大容量GPU以确保模型性能和效率。项目由Peltarion完成,提供相关代码和训练脚本供开发者参考。
multi-qa-distilbert-cos-v1 - 基于215M问答对训练的高性能语义搜索模型
GithubHuggingfacesentence-transformers多任务学习开源项目模型自然语言处理语义搜索问答系统
multi-qa-distilbert-cos-v1是一个基于sentence-transformers的语义搜索模型,能将文本映射到768维向量空间。该模型利用WikiAnswers、PAQ和Stack Exchange等多个数据集中的215M个问答对进行训练,可高效编码查询和文档并计算相似度。这使其成为实现准确语义搜索的理想选择,适用于各类信息检索任务。
dpr-reader-single-nq-base - 基于自然问题数据集的开放域问答工具
Dense Passage RetrievalGithubHuggingface开源项目模型知识检索自然问题数据集语言模型问答系统
dpr-reader-single-nq-base是Facebook Research开发的开放域问答模型,训练于自然问题数据集。利用Dense Passage Retrieval框架,该模型能够快速准确地检索并回答大规模文字语料中的问答任务,灵活应用于多种场景。需注意模型可能存在的偏见和局限性。
roberta-base-snli - 基于SNLI数据集训练且F1分值达0.9的自然语言推理模型
GithubHuggingfaceRoBERTaSNLI开源项目机器学习模型模型训练自然语言处理
roberta-base-snli是一个经过SNLI数据集训练的自然语言推理模型。模型采用Adam优化器结合余弦学习率调度策略,以16的batch size和2e-05的学习率进行了4轮训练。在评估数据集上,模型达到了0.9004的F1得分。项目基于Transformers 4.21.1框架开发,能够有效完成自然语言推理相关任务。
distilbert-base-uncased-distilled-squad - DistilBERT轻量级问答模型
DistilBERTGithubHuggingfaceSQuAD开源项目机器学习模型自然语言处理问答系统
distilbert-base-uncased-distilled-squad是一个经过知识蒸馏的轻量级问答模型。它基于DistilBERT架构,在SQuAD v1.1数据集上进行了微调。该模型在保留BERT 95%性能的同时,参数量减少40%,速度提升60%。在SQuAD v1.1开发集上,它实现了86.9的F1分数。凭借其高效性能,这个模型适合各种需要快速、准确问答能力的应用场景。
distilbert-extractive-qa-project - 描述NLP模型卡片的功能与使用
GithubHuggingfacetransformers偏见和风险开源项目模型模型卡片环境影响训练详细信息
该项目为NLP模型卡片提供信息展示和使用指导,涵盖训练细节、用途范围、偏见与风险和环境影响等方面。虽然模型卡片信息有待完善,但项目提供了基础框架与导向,帮助评估模型应用和识别潜在风险及局限性。用户可以按步骤快速开始使用该模型。
t5-small-squad-qag - 基于t5-small的文本智能问答生成系统
GithubHuggingfaceSQuAD数据集T5模型lmqg开源项目模型自然语言处理问答生成
t5-small-squad-qag是一个经过优化的英文智能问答系统,通过lmqg/qag_squad数据集训练,BERTScore评分达92.76%。系统支持lmqg和transformers库集成,可实现文本分析和问答对自动生成,主要应用于教育和内容创作领域。
tapas-large-finetuned-wtq - TAPAS大型表格问答模型实现精准查询和复杂推理
GithubHuggingfaceTAPASWikiTable Questions开源项目模型深度学习自然语言处理表格问答
TAPAS-large-finetuned-wtq是一个基于TAPAS架构的大型表格问答模型。该模型在WikiTable Questions数据集上微调,采用相对位置编码,支持复杂表格查询和推理。经过MLM和中间预训练,模型在SQA、WikiSQL和WTQ数据集上进行链式微调,在WTQ开发集达到50.97%的准确率。模型能够高效处理与表格相关的复杂问题,提供准确的表格信息提取功能。
stsb-roberta-base - 基于RoBERTa的句对语义相似度预测模型
GithubHuggingfaceSentenceTransformers交叉编码器开源项目模型模型训练自然语言处理语义相似度
stsb-roberta-base是一个基于SentenceTransformers的Cross-Encoder模型,专门用于预测句对语义相似度。该模型在STS benchmark数据集上训练,可为句对相似性给出0到1之间的分数。模型支持通过sentence_transformers库或Transformers的AutoModel类调用,为NLP任务提供语义分析功能。模型采用Apache-2.0开源许可,使用简单,只需几行代码即可实现句对相似度预测。它不仅可用于语义相似度任务,还可应用于问答系统、文本匹配等多种NLP场景,为开发者提供了便捷的语义分析解决方案。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号