Project Icon

Llama-2-7b-LoRA-alpaca-cleaned

量化配置与训练过程的详细介绍

该项目客观描述了在PEFT框架下应用bitsandbytes量化配置进行模型训练的详细过程,尤其是4bit量化策略与bfloat16计算类型的使用。这些配置旨在提升模型效率,优化计算负载表现。

Meta-Llama-3.1-70B-Instruct-bnb-4bit - 量化调优技术显著提升性能,减少资源消耗
GithubHuggingfaceLlama 3.1Unsloth免费教程开源项目性能优化模型模型微调
Unsloth工具实现对Llama 3.1等模型的量化,显著减少内存使用,提升运行速度至原来的2-5倍。提供适合初学者的Google Colab免费笔记本,简单加载数据集即可运行得到优化模型,可导出为GGUF、vLLM等格式或上传至Hugging Face。支持多种模型,如Llama-2、Gemma、Mistral,满足高效调优需求。
Llama-2-13B-chat-GPTQ - 经GPTQ量化的Llama 2对话模型
GithubHuggingfaceLlama 2Meta人工智能对话开源项目模型模型量化深度学习
Llama 2 13B Chat的GPTQ量化版本,提供4-bit和8-bit多种量化选项。模型支持AutoGPTQ和ExLlama等框架,可用于对话和文本生成。通过量化技术降低显存占用并保持模型性能,适合在GPU设备上部署使用。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2模型的多精度量化版本
GithubHuggingfaceLlama人工智能开源开源项目模型语言模型量化
Llama-3.2-1B-Instruct-GGUF是Llama 3.2模型的量化版本,使用llama.cpp和imatrix方法进行处理。该项目提供从f16到Q3_K_XL多种精度选项,文件大小在0.80GB至2.48GB之间。这些模型支持多语言处理,适合在资源受限的设备上运行,用户可根据需求选择合适版本以平衡性能和资源占用。
Halu-8B-Llama3-v0.35-GGUF - Halu-8B-Llama3-v0.35量化版本选择指南,助力性能优化
GithubHalu-8B-Llama3-v0.35Huggingfacehuggingface-clitransformers开源项目文本生成模型量化
项目Halu-8B-Llama3-v0.35提供多种量化版本,通过不同的量化类型优化模型性能,以适应各类RAM和VRAM的需求。可选择K-quants或I-quants,满足特定场景下的性能需求。高质量的I-quants适用于CPU和Apple Metal,性能优于传统K-quants但不兼容Vulcan,并附有详细的性能图表和量化指南,帮助选择适合的量化版本。
Llama-3.2-3B-Instruct-uncensored-GGUF - 3B参数指令微调语言模型的高效GGUF量化版本
GGUFGithubHuggingfaceLlama人工智能开源项目模型量化
Llama-3.2-3B-Instruct-uncensored模型的GGUF量化版本,提供从1.6GB到7.3GB不等的多种量化类型。量化后的模型大小显著减小,便于部署使用,同时尽可能保持原模型性能。项目包含详细的量化版本说明、使用指南和常见问题解答,有助于用户选择适合的版本。
Llama3-8B-1.58-100B-tokens - 基于BitNet架构的Llama3 8B量化版本
BitNetGithubHuggingfaceLlama3-8B-1.58开源项目模型模型训练语言模型量化
这是一个基于BitNet 1.58b架构的语言模型,通过对Llama-3-8B-Instruct进行微调开发。模型在FineWeb-edu数据集上完成了1000亿token的训练,采用1e-5学习率。测评显示其部分性能指标接近原版Llama3 8B,体现了极限量化在大型语言模型领域的应用潜力。
Llama-3-8B-Instruct-DPO-v0.2-GGUF - Llama-3-8B的GGUF格式量化模型
GGUFGithubHuggingfaceLlama-3大型语言模型开源项目文本生成模型量化
Llama-3-8B-Instruct-DPO-v0.2模型的GGUF格式量化版本,提供2-bit至8-bit多级量化选项。该版本显著减小模型体积和内存需求,同时维持性能。采用ChatML提示模板,兼容多种GGUF格式支持工具,如llama.cpp和LM Studio。此轻量化版本使大型语言模型能在更多设备上本地运行,扩展了应用范围。
Replete-LLM-V2.5-Qwen-14b-GGUF - Replete-LLM-V2.5-Qwen-14b模型的多量化处理与硬件优化概述
ARM芯片GithubHuggingfaceRombos-LLM-V2.5-Qwen-14b开源项目性能比较模型模型优化量化
该项目对Rombos-LLM-V2.5-Qwen-14b模型进行了多种量化优化,使用了llama.cpp的b3825版本。支持多种量化格式,如f16、Q8_0、Q6_K_L等,适用不同硬件环境,推荐Q6_K_L和Q5_K_L以实现高质量和资源节省。用户可根据硬件需求选择合适的格式,并使用huggingface-cli进行下载。针对ARM芯片提供了特定的优化量化选项Q4_0_X_X,广泛适用于文本生成应用,提升运行效率和输出质量。
Meta-Llama-3.1-8B-Instruct-FP8-dynamic - Meta-Llama-3.1-8B的FP8量化技术优化多语言文本生成
GithubHuggingfaceMeta-Llama-3.1vLLM多语言开源项目模型模型优化量化
Meta-Llama-3.1-8B-Instruct-FP8-dynamic利用FP8量化技术优化内存使用,适用于多语言商业和研究用途,提升推理效率。该模型在Arena-Hard评估中实现105.4%回收率,在OpenLLM v1中达成99.7%回收率,展示接近未量化模型的性能表现。支持多语言文本生成,尤其适合聊天机器人及语言理解任务,且通过vLLM后端简化部署流程。利用LLM Compressor进行量化,降低存储成本并提高部署效率,保持高质量文本生成能力。
Replete-Coder-Llama3-8B-GGUF - 基于llama.cpp优化的高效量化方法提升文本生成性能
GithubHuggingfaceReplete-Coder-Llama3-8B开源项目数据集文本生成模型模型压缩量化
该开源项目利用llama.cpp进行模型量化,适用于HumanEval和AI2推理挑战等任务,提供多种量化选项如Q8_0和Q6_K,适应不同内存要求,同时优化性能表现。I-quant量化在低于Q4时表现良好,用户可依据自己的设备内存和GPU VRAM选择合适的量化格式,通过huggingface-cli便捷获取所需文件。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

吐司

探索Tensor.Art平台的独特AI模型,免费访问各种图像生成与AI训练工具,从Stable Diffusion等基础模型开始,轻松实现创新图像生成。体验前沿的AI技术,推动个人和企业的创新发展。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号