Project Icon

Llama-3.2-1B-Instruct-bnb-4bit

Unsloth技术加速大型语言模型微调

本项目展示了利用Unsloth技术微调Llama 3.2等大型语言模型的方法。该技术可将微调速度提升2-5倍,同时降低70%内存占用。项目为Llama 3.2、Gemma 2和Mistral等多个模型提供免费Google Colab笔记本,便于用户进行模型微调。这一方法适合各层级用户,能有效提升模型训练效率。

llama-3-8b-bnb-4bit - 大语言模型微调工具提升训练速度并降低内存使用
AI训练GithubHuggingfaceLlama 3MetaUnsloth大语言模型开源项目模型
llama-3-8b-bnb-4bit项目是一种高效的大语言模型微调方法,能将训练速度提升2-5倍,同时减少70%内存使用。支持Llama 3.1、Gemma 2和Mistral等热门模型,并提供面向初学者的Google Colab笔记本。用户可以快速微调模型并导出为GGUF、vLLM格式或上传至Hugging Face。该工具降低了LLM微调的门槛,为开发者和研究者提供了便利。
Llama-3.2-1B-Instruct-GGUF - Llama 3.2语言模型微调加速与优化工具
GithubHuggingfaceLlama-3.2人工智能大语言模型开源项目模型模型训练自然语言处理
该项目针对Meta的Llama 3.2-1B-Instruct模型提供开源微调解决方案。通过Unsloth技术,实现2-5倍训练速度提升和70%内存节省。项目提供多种量化版本的GGUF模型文件,支持Llama 3.2、Gemma 2等主流大语言模型。免费Google Colab笔记本便于用户进行微调和部署。适合需要高效定制大语言模型的开发者和研究人员使用。
Meta-Llama-3.1-70B-Instruct-bnb-4bit - 量化调优技术显著提升性能,减少资源消耗
GithubHuggingfaceLlama 3.1Unsloth免费教程开源项目性能优化模型模型微调
Unsloth工具实现对Llama 3.1等模型的量化,显著减少内存使用,提升运行速度至原来的2-5倍。提供适合初学者的Google Colab免费笔记本,简单加载数据集即可运行得到优化模型,可导出为GGUF、vLLM等格式或上传至Hugging Face。支持多种模型,如Llama-2、Gemma、Mistral,满足高效调优需求。
Llama-3.2-3B - 利用优化技术实现提速和内存节省的开源语言模型项目
GithubHuggingfaceLlama 3.2多语言处理大语言模型开源项目模型模型微调算力优化
这是一个基于Unsloth技术的大型语言模型优化项目。支持8种官方语言,采用改进的transformer架构和GQA技术。训练速度提升2.4倍,内存使用减少58%。提供Google Colab环境,支持对话、文本补全等场景的模型微调,适合各级用户。该项目基于Meta的原始模型,遵循社区许可协议。
Meta-Llama-3.1-70B-bnb-4bit - 高效智能模型微调框架实现训练提速与内存优化
GemmaGithubHuggingfaceLlama-3开源模型开源项目机器学习模型模型微调
Unsloth是Meta Llama 3.1模型的优化框架,集成了Gemma 2、Mistral等主流模型支持。框架在Google Colab环境下运行,具备模型训练速度提升2-5倍及内存占用降低70%的特点。支持GGUF、vLLM等格式导出,并提供新手教程指导开发者完成模型微调与部署。
mistral-7b-instruct-v0.2-bnb-4bit - 使用Unsloth技术优化模型微调,显著提升性能并减少内存占用
GithubHuggingfaceMistralUnsloth开源项目性能优化数据集机器学习模型
该项目介绍了一种运用Unsloth技术的模型微调方法,使Mistral、Gemma、Llama等模型实现2-5倍的速度提升,并减少70%的内存使用。用户可通过在Google Colab或Kaggle运行免费笔记本,轻松获得经过优化的模型。工具初学者友好,支持多种微调和导出格式,如GGUF、vLLM,及上传至Hugging Face,满足不同用户的需求。
Mistral-Nemo-Base-2407-bnb-4bit - 提高模型微调速度并优化内存占用
GithubGoogle ColabHuggingfaceMistralUnsloth开源项目微调效率模型
本项目使用Unsloth技术对Llama 3.1、Gemma 2和Mistral等模型提高微调速度,减少内存使用高达70%。通过免费的Google Colab笔记本,用户能够轻松完成微调过程,非常适合初学者使用。支持的模型包括Llama-3 8b、Gemma 7b、Mistral 7b等,这些模型在性能和内存使用上均有显著提升。
Mistral-Nemo-Instruct-2407-bnb-4bit - 高效LLM微调框架提速2-5倍并减少70%内存使用
GithubHuggingfaceUnsloth加速训练大语言模型开源项目微调模型节省内存
该项目为Mistral、Gemma、Llama等大语言模型提供高效微调框架。利用Unsloth技术,训练速度提升2-5倍,内存使用减少70%。项目提供多个免费Google Colab笔记本,支持Llama-3 8b、Gemma 7b、Mistral 7b等模型训练。框架操作简单,适合初学者使用,支持将微调模型导出为GGUF、vLLM格式或上传至Hugging Face平台。
llama-2-7b-bnb-4bit - 提升Llama模型性能,实现速度翻倍与内存节省
GithubHuggingfaceLlamaUnsloth内存优化参数调优开源项目模型模型量化
项目通过4bit量化模型和Unsloth技术,优化Llama系列模型的性能。用户可在Google Colab上进行简单操作,免费获取如Gemma、Mistral、TinyLlama等模型,并实现性能提升和内存节省。以Llama 2为例,其推理速度可提高2.2倍,内存使用减少43%。项目适合初学者,支持导出为GGUF和vLLM格式,可上传至Hugging Face。
llama-3-8b - 优化Llama 3 效率提升 内存占用减少
AI绘图GithubHuggingfaceLlama3内存使用开源项目性能优化模型模型微调
llama-3-8b项目通过Unsloth技术在Colab平台上提供免费调优服务,支持包括Llama-3 8b和Gemma 7b在内的多种模型。项目以简单操作为特征,使模型在提升两倍以上速度和减少70%内存使用的同时,满足模型高效更新需求,适用于开发者和研究人员。所有笔记本友好初学者,并支持数据集和框架的多样性导出与上传。
项目侧边栏1项目侧边栏2
推荐项目
Project Cover

豆包MarsCode

豆包 MarsCode 是一款革命性的编程助手,通过AI技术提供代码补全、单测生成、代码解释和智能问答等功能,支持100+编程语言,与主流编辑器无缝集成,显著提升开发效率和代码质量。

Project Cover

AI写歌

Suno AI是一个革命性的AI音乐创作平台,能在短短30秒内帮助用户创作出一首完整的歌曲。无论是寻找创作灵感还是需要快速制作音乐,Suno AI都是音乐爱好者和专业人士的理想选择。

Project Cover

有言AI

有言平台提供一站式AIGC视频创作解决方案,通过智能技术简化视频制作流程。无论是企业宣传还是个人分享,有言都能帮助用户快速、轻松地制作出专业级别的视频内容。

Project Cover

Kimi

Kimi AI助手提供多语言对话支持,能够阅读和理解用户上传的文件内容,解析网页信息,并结合搜索结果为用户提供详尽的答案。无论是日常咨询还是专业问题,Kimi都能以友好、专业的方式提供帮助。

Project Cover

阿里绘蛙

绘蛙是阿里巴巴集团推出的革命性AI电商营销平台。利用尖端人工智能技术,为商家提供一键生成商品图和营销文案的服务,显著提升内容创作效率和营销效果。适用于淘宝、天猫等电商平台,让商品第一时间被种草。

Project Cover

SubCat字幕猫

SubCat字幕猫APP是一款创新的视频播放器,它将改变您观看视频的方式!SubCat结合了先进的人工智能技术,为您提供即时视频字幕翻译,无论是本地视频还是网络流媒体,让您轻松享受各种语言的内容。

Project Cover

美间AI

美间AI创意设计平台,利用前沿AI技术,为设计师和营销人员提供一站式设计解决方案。从智能海报到3D效果图,再到文案生成,美间让创意设计更简单、更高效。

Project Cover

AIWritePaper论文写作

AIWritePaper论文写作是一站式AI论文写作辅助工具,简化了选题、文献检索至论文撰写的整个过程。通过简单设定,平台可快速生成高质量论文大纲和全文,配合图表、参考文献等一应俱全,同时提供开题报告和答辩PPT等增值服务,保障数据安全,有效提升写作效率和论文质量。

Project Cover

天工AI音乐

天工AI音乐平台支持音乐创作,特别是在国风音乐领域。该平台适合新手DJ和音乐爱好者使用,帮助他们启动音乐创作,增添生活乐趣,同时发现和分享新音乐。

投诉举报邮箱: service@vectorlightyear.com
@2024 懂AI·鲁ICP备2024100362号-6·鲁公网安备37021002001498号